欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

使用FLANN算法纠正图像匹配

程序员文章站 2022-04-01 12:57:54
...
import numpy as np
import cv2
from matplotlib import pyplot as plt

MIN_MATCH_COUNT = 10

img1 = cv2.imread('C:/Users/Administrator/Desktop/1010test/1.jpg',0)
img2 = cv2.imread('C:/Users/Administrator/Desktop/1010test/canny1.jpg',0)

# 使用SIFT检测角点
sift = cv2.xfeatures2d.SIFT_create()
# 获取关键点和描述符
kp1, des1 = sift.detectAndCompute(img1,None)
kp2, des2 = sift.detectAndCompute(img2,None)

# 定义FLANN匹配器
index_params = dict(algorithm = 1, trees = 5)
search_params = dict(checks = 50)
flann = cv2.FlannBasedMatcher(index_params, search_params)
# 使用KNN算法匹配
matches = flann.knnMatch(des1,des2,k=2)

# 去除错误匹配
good = []
for m,n in matches:
    if m.distance < 0.7*n.distance:
        good.append(m)

# 单应性
if len(good)>MIN_MATCH_COUNT:
    # 改变数组的表现形式,不改变数据内容,数据内容是每个关键点的坐标位置
    src_pts = np.float32([ kp1[m.queryIdx].pt for m in good ]).reshape(-1,1,2)
    dst_pts = np.float32([ kp2[m.trainIdx].pt for m in good ]).reshape(-1,1,2)
    # findHomography 函数是计算变换矩阵
    # 参数cv2.RANSAC是使用RANSAC算法寻找一个最佳单应性矩阵H,即返回值M
    # 返回值:M 为变换矩阵,mask是掩模
    M, mask = cv2.findHomography(src_pts, dst_pts, cv2.RANSAC,5.0)
    # ravel方法将数据降维处理,最后并转换成列表格式
    matchesMask = mask.ravel().tolist()
    # 获取img1的图像尺寸
    h,w = img1.shape
    # pts是图像img1的四个顶点
    pts = np.float32([[0,0],[0,h-1],[w-1,h-1],[w-1,0]]).reshape(-1,1,2)
    # 计算变换后的四个顶点坐标位置
    dst = cv2.perspectiveTransform(pts,M)
    print(dst)
    # 根据四个顶点坐标位置在img2图像画出变换后的边框
    img2 = cv2.polylines(img2,[np.int32(dst)],True,(255,0,0),3, cv2.LINE_AA)

else:
    print("Not enough matches are found - %d/%d") % (len(good),MIN_MATCH_COUNT)
    matchesMask = None

# 显示匹配结果
draw_params = dict(matchColor = (0,255,0), # draw matches in green color
                   singlePointColor = None,
                   matchesMask = matchesMask, # draw only inliers
                   flags = 2)
img3 = cv2.drawMatches(img1,kp1,img2,kp2,good,None,**draw_params)

img4 = cv2.circle(img2,(53,846),20,(255,255,255))

# cv2.imshow("ddd",img4)
# cv2.waitKey(0)
# cv2.destroyAllWindows()
cv2.imwrite("ddd.jpg",img4)

#plt.imshow(img3, 'gray'),plt.show()