欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

opencv_python Stitcher拼接图像实例(SIFT/SURF检测特征点,BF/FLANN匹配特征点)

程序员文章站 2022-06-11 12:11:41
...

opencv_python Stitcher拼接图像实例(SIFT/SURF检测特征点,BF/FLANN匹配特征点)

SIFI/SURF检测特征点,BF/FLANN匹配特征点,stitch缝接图片,并进行视角变换。
先创建一个Stitcher类:

import numpy as np
import cv2

class Stitcher:

    # 拼接函数
    def stitch(self, images, ratio=0.75, reprojThresh=4.0, showMatches=False):
        # 获取输入图片
        (imageB, imageA) = images
        # 检测A、B图片的SIFT关键特征点,并计算特征描述子
        (kpsA, featuresA) = self.detectAndDescribe(imageA)
        (kpsB, featuresB) = self.detectAndDescribe(imageB)

        # 匹配两张图片的所有特征点,返回匹配结果
        M = self.matchKeypoints(kpsA, kpsB, featuresA, featuresB, ratio, reprojThresh)

        # 如果返回结果为空,没有匹配成功的特征点,退出算法
        if M is None:
            return None

        # 否则,提取匹配结果
        # H是3x3视角变换矩阵
        (matches, H, status) = M
        # 将图片A进行视角变换,result是变换后图片
        result = cv2.warpPerspective(imageA, H, (imageA.shape[1] + imageB.shape[1], imageA.shape[0]))
        self.cv_show('result', result)
        # 将图片B传入result图片最左端
        result[0:imageB.shape[0], 0:imageB.shape[1]] = imageB
        self.cv_show('result', result)
        # 检测是否需要显示图片匹配
        if showMatches:
            # 生成匹配图片
            vis = self.drawMatches(imageA, imageB, kpsA, kpsB, matches, status)
            # 返回结果
            return (result, vis)

        # 返回匹配结果
        return result

    def cv_show(self, name, img):
        cv2.imshow(name, img)
        cv2.waitKey(0)
        cv2.destroyAllWindows()

    def detectAndDescribe(self, image):
        # 将彩色图片转换成灰度图
        gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)

        # SURF生成器
        descriptor = cv2.xfeatures2d.SURF_create()
        kps, features = descriptor.detectAndCompute(image, None)
        # # 建立SIFT生成器
        # descriptor = cv2.xfeatures2d.SIFT_create()
        # # 检测SIFT特征点,并计算描述子
        # (kps, features) = descriptor.detectAndCompute(image, None)

        # 将结果转换成NumPy数组
        kps = np.float32([kp.pt for kp in kps])

        # 返回特征点集,及对应的描述特征
        return (kps, features)

    # def matchKeypoints(self, kpsA, kpsB, featuresA, featuresB, ratio, reprojThresh):
    #     # 建立暴力匹配器
    #     matcher = cv2.BFMatcher()
    #
    #     # 使用KNN检测来自A、B图的SIFT特征匹配对,K=2
    #     rawMatches = matcher.knnMatch(featuresA, featuresB, 2)
    #
    #     matches = []
    #     for m in rawMatches:
    #         # 当最近距离跟次近距离的比值小于ratio值时,保留此匹配对
    #         if len(m) == 2 and m[0].distance < m[1].distance * ratio:
    #             # 存储两个点在featuresA, featuresB中的索引值
    #             matches.append((m[0].trainIdx, m[0].queryIdx))
    #
    #     # 当筛选后的匹配对大于4时,计算视角变换矩阵
    #     if len(matches) > 4:
    #         # 获取匹配对的点坐标
    #         ptsA = np.float32([kpsA[i] for (_, i) in matches])
    #         ptsB = np.float32([kpsB[i] for (i, _) in matches])
    #
    #         # 计算视角变换矩阵
    #         (H, status) = cv2.findHomography(ptsA, ptsB, cv2.RANSAC, reprojThresh)
    #
    #         # 返回结果
    #         return (matches, H, status)
    #
    #     # 如果匹配对小于4时,返回None
    #     return None

    def matchKeypoints(self, kpsA, kpsB, featuresA, featuresB, ratio, reprojThresh):
        # FLANN匹配参数,定义FLANN匹配器,使用KNN算法实现匹配
        # 这里使用FLANN_INDEX_KDTREE,5kd-trees和50 checks迭代
        FLANN_INDEX_KDTREE = 1
        indexParams = dict(algorithm=1, trees=5)
        searchParams = dict(check=100)

        flann = cv2.FlannBasedMatcher(indexParams, searchParams)
        rawMatches = flann.knnMatch(featuresA, featuresB, k=2)

        matches = []
        for m in rawMatches:
            # 当最近距离跟次近距离的比值小于ratio值时,保留此匹配对
            if len(m) == 2 and m[0].distance < m[1].distance * ratio:
                # 存储两个点在featuresA, featuresB中的索引值
                matches.append((m[0].trainIdx, m[0].queryIdx))

        # 当筛选后的匹配对大于4时,计算视角变换矩阵
        if len(matches) > 4:
            # 获取匹配对的点坐标
            ptsA = np.float32([kpsA[i] for (_, i) in matches])
            ptsB = np.float32([kpsB[i] for (i, _) in matches])

            # 计算视角变换矩阵
            (H, status) = cv2.findHomography(ptsA, ptsB, cv2.RANSAC, reprojThresh)

            # 返回结果
            return (matches, H, status)

        # 如果匹配对小于4时,返回None
        return None

    def drawMatches(self, imageA, imageB, kpsA, kpsB, matches, status):
        # 初始化可视化图片,将A、B图左右连接到一起
        (hA, wA) = imageA.shape[:2]
        (hB, wB) = imageB.shape[:2]
        vis = np.zeros((max(hA, hB), wA + wB, 3), dtype="uint8")
        vis[0:hA, 0:wA] = imageA
        vis[0:hB, wA:] = imageB

        # 联合遍历,画出匹配对
        for ((trainIdx, queryIdx), s) in zip(matches, status):
            # 当点对匹配成功时,画到可视化图上
            if s == 1:
                # 画出匹配对
                ptA = (int(kpsA[queryIdx][0]), int(kpsA[queryIdx][1]))
                ptB = (int(kpsB[trainIdx][0]) + wA, int(kpsB[trainIdx][1]))
                cv2.line(vis, ptA, ptB, (0, 255, 0), 1)

        # 返回可视化结果
        return vis

测试:

import cv2
from Stitcher import Stitcher
from matplotlib import pyplot as plt

imageA = cv2.imread("img/left_01.png")
imageB = cv2.imread("img/right_01.png")

# 把图像拼接成全景图
stitcher = Stitcher()
(result, vis) = stitcher.stitch([imageA, imageB], showMatches=True)

# 显示所有图片
cv2.imshow("Result", result)
cv2.waitKey(0)
cv2.destroyAllWindows()

opencv_python Stitcher拼接图像实例(SIFT/SURF检测特征点,BF/FLANN匹配特征点)
opencv_python Stitcher拼接图像实例(SIFT/SURF检测特征点,BF/FLANN匹配特征点)
opencv_python Stitcher拼接图像实例(SIFT/SURF检测特征点,BF/FLANN匹配特征点)
opencv_python Stitcher拼接图像实例(SIFT/SURF检测特征点,BF/FLANN匹配特征点)

参考视频:

https://www.bilibili.com/video/av61678672/?p=13