OpenCV 使用 FLANN 库实现特征匹配
程序员文章站
2022-06-11 12:16:24
...
目标
在这篇文章中你将学到:
- 使用 FlannBasedMatcher 接口来执行快速高效的匹配,用的是 FLANN ( Fast Approximate Nearest Neighbor Search Library ) 算法
代码
完整代码可从这里 下载
/**
* @file SURF_FlannMatcher
* @brief SURF detector + descriptor + FLANN Matcher
* @author A. Huaman
*/
#include "opencv2/opencv_modules.hpp"
#include <stdio.h>
#ifndef HAVE_OPENCV_NONFREE
int main(int, char**)
{
printf("The sample requires nonfree module that is not available in your OpenCV distribution.\n");
return -1;
}
#else
# include "opencv2/core/core.hpp"
# include "opencv2/features2d/features2d.hpp"
# include "opencv2/highgui/highgui.hpp"
# include "opencv2/nonfree/features2d.hpp"
using namespace cv;
void readme();
/**
* @function main
* @brief Main function
*/
int main( int argc, char** argv )
{
if( argc != 3 )
{ readme(); return -1; }
Mat img_1 = imread( argv[1], CV_LOAD_IMAGE_GRAYSCALE );
Mat img_2 = imread( argv[2], CV_LOAD_IMAGE_GRAYSCALE );
if( !img_1.data || !img_2.data )
{ printf(" --(!) Error reading images \n"); return -1; }
//-- Step 1: Detect the keypoints using SURF Detector
int minHessian = 400;
SurfFeatureDetector detector( minHessian );
std::vector<KeyPoint> keypoints_1, keypoints_2;
detector.detect( img_1, keypoints_1 );
detector.detect( img_2, keypoints_2 );
//-- Step 2: Calculate descriptors (feature vectors)
SurfDescriptorExtractor extractor;
Mat descriptors_1, descriptors_2;
extractor.compute( img_1, keypoints_1, descriptors_1 );
extractor.compute( img_2, keypoints_2, descriptors_2 );
//-- Step 3: Matching descriptor vectors using FLANN matcher
FlannBasedMatcher matcher;
std::vector< DMatch > matches;
matcher.match( descriptors_1, descriptors_2, matches );
double max_dist = 0; double min_dist = 100;
//-- Quick calculation of max and min distances between keypoints
for( int i = 0; i < descriptors_1.rows; i++ )
{ double dist = matches[i].distance;
if( dist < min_dist ) min_dist = dist;
if( dist > max_dist ) max_dist = dist;
}
printf("-- Max dist : %f \n", max_dist );
printf("-- Min dist : %f \n", min_dist );
//-- Draw only "good" matches (i.e. whose distance is less than 2*min_dist,
//-- or a small arbitary value ( 0.02 ) in the event that min_dist is very
//-- small)
//-- PS.- radiusMatch can also be used here.
std::vector< DMatch > good_matches;
for( int i = 0; i < descriptors_1.rows; i++ )
{ if( matches[i].distance <= max(2*min_dist, 0.02) )
{ good_matches.push_back( matches[i]); }
}
//-- Draw only "good" matches
Mat img_matches;
drawMatches( img_1, keypoints_1, img_2, keypoints_2,
good_matches, img_matches, Scalar::all(-1), Scalar::all(-1),
vector<char>(), DrawMatchesFlags::NOT_DRAW_SINGLE_POINTS );
//-- Show detected matches
imshow( "Good Matches", img_matches );
for( int i = 0; i < (int)good_matches.size(); i++ )
{ printf( "-- Good Match [%d] Keypoint 1: %d -- Keypoint 2: %d \n", i, good_matches[i].queryIdx, good_matches[i].trainIdx ); }
waitKey(0);
return 0;
}
/**
* @function readme
*/
void readme()
{ printf(" Usage: ./SURF_FlannMatcher <img1> <img2>\n"); }
#endif
结果
-
这是对首张图片进行特征检测的结果
-
下面是对关键点进行过滤过程中的控制台输出:
上一篇: Struts2.1.8使用心得
推荐阅读
-
WindowsMobile上使用ASIFT实现对视角变化更鲁棒的特征匹配
-
Opencv的使用小教程4——HOG特征及其python代码实现
-
python学习之利用opencv实现SIFT特征提取与匹配
-
OpenCV:使用python-cv2+Hog特征+SVM实现狮子识别
-
OpenCV中feature2D学习——SIFT和SURF算子实现特征点提取与匹配
-
ORB特征提取匹配opencv3代码实现
-
OpenCV 使用 FLANN 库实现特征匹配
-
opencv3/C++ FLANN特征匹配
-
opencv——SURF特征点检测并使用Flann算法匹配
-
opencv_python Stitcher拼接图像实例(SIFT/SURF检测特征点,BF/FLANN匹配特征点)