欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

拓扑排序代码实现

程序员文章站 2024-03-19 11:59:28
...

main.cpp

#include<stdio.h>
#include<stdlib.h>
#include"Queue.h"


void main()
{
	printf("拓扑排序是有向图\n");
	LGraph Graph;
	Graph = BuildGraph();
	TopSort(Graph);
}

Queue.h

#ifndef QUEUE
#include"TopSort.h"

typedef struct {
	int* base;
	int front;
	int rear;
}SqQueue;

void InitQueue(SqQueue* Q);
void getQueueLength(SqQueue Q);
void EnQueue(SqQueue* Q, int e);
void DeQueue(SqQueue* Q, Vertex* V);
bool IsEmpty(SqQueue Q);

#endif // !QUEUE
#pragma once

Queue.cpp

#include"Queue.h"
#include"stdlib.h"
#include"stdio.h"

bool IsEmpty(SqQueue Q)
{
	return Q.front == Q.rear ? true : false;
}



void InitQueue(SqQueue* Q)
{
	Q->base = (int*)malloc(sizeof(int) * MaxVertexNum);
	if (!Q)
	{
		printf("error");
	}
	else {
		Q->front = Q->rear = 0;
	}
}

void getQueueLength(SqQueue Q)
{
	printf("\n length = %d \n", (Q.rear - Q.front + MaxVertexNum) % MaxVertexNum);
}

void EnQueue(SqQueue* Q, int e)
{
	if ((Q->rear + 1) % MaxVertexNum == Q->front)
	{
		printf("full");
	}
	else
	{
		Q->base[Q->rear] = e;
		Q->rear = (Q->rear + 1) % MaxVertexNum;
	}
}

void DeQueue(SqQueue* Q, Vertex* V)
{
	if (Q->rear == Q->front)
	{
		printf("no element");
	}
	else
	{
		*V = Q->base[Q->front];
		Q->front = (Q->front + 1) % MaxVertexNum;
	}
	
}

TopSort.h

#ifndef TOPSORT

#define MaxVertexNum 100

typedef int Vertex; //顶点下标
typedef int WeigthType; //边的权值
typedef int DataType; //顶点的数据类型

//边的定义
typedef struct ENode {
	Vertex v1, v2;
	WeigthType weigth;
}*PtrToENode;
typedef PtrToENode Edge;

//邻接点定义
typedef struct AdjVNode {
	Vertex AdjV; //邻接点的下标
	WeigthType weight; //边的权重
	struct AdjVNode* Next; //下一个邻接点
}*PtrToAdjVNode;

//表头节点定义
typedef struct VNode {
	PtrToAdjVNode FirstEdge;
	DataType Data; //可不用
}AdjList[MaxVertexNum];

// 图结点的定义 
typedef struct GNode {
	int Nv;     /* 顶点数 */
	int Ne;     /* 边数   */
	AdjList G;  /* 邻接表 */
}*PtrToGNode;
typedef PtrToGNode LGraph;


//插入一条边
void InsertEdge(LGraph Graph, Edge E);
//构建一个图
LGraph BuildGraph();
//拓扑排序
void TopSort(LGraph Graph);


#endif // !TOPSORT
#pragma once


TopSort.cpp

#include"TopSort.h"
#include"Queue.h"
#include<stdio.h>
#include<stdlib.h>

Vertex TopOrder[MaxVertexNum];

// 初始化没有边的图
LGraph CreatGraph(int VertexNum)
{
	Vertex V;
	LGraph Graph;

	Graph = (LGraph)malloc(sizeof(struct GNode));
	Graph->Nv = VertexNum;
	Graph->Ne = 0;

	for (V = 0; V < Graph->Nv; V++)
		Graph->G[V].FirstEdge = NULL;

	return Graph;
}

//插入一条边 v1(出)->v2(入)
void InsertEdge(LGraph Graph, Edge E)
{
	PtrToAdjVNode newNode;

	newNode = (PtrToAdjVNode)malloc(sizeof(struct AdjVNode));
	newNode->AdjV = E->v2;
	newNode->weight = E->weigth;
	newNode->Next = Graph->G[E->v1].FirstEdge;
	Graph->G[E->v1].FirstEdge = newNode;

}

//构建一个图
LGraph BuildGraph()
{
	int Nv, i;
	Vertex V;
	Edge E;
	LGraph Graph;

	printf_s("请输入插入节点的个数\n");
	scanf_s("%d", &Nv);

	Graph = CreatGraph(Nv);

	printf_s("请输入插入边的个数\n");
	scanf_s("%d", &(Graph->Ne));
	if (Graph->Ne != 0)
	{
		E = (Edge)malloc(sizeof(struct ENode));
		if (!E)
		{
			printf("E生成失败");
			exit(-1);
			return NULL;
		}
		for (i = 0; i < Graph->Ne; i++)
		{
			printf("请输入第%d条边:  V1,V2,权重\n", i);
			scanf_s("%d %d %d", &(E->v1), &(E->v2), &(E->weigth));
			InsertEdge(Graph, E);
		}
	}

	for (V = 0; V < Graph->Nv; V++)
	{
		printf("请输入第%d个顶点的数据\n", V);
		scanf_s("%d", &(Graph->G[V].Data));
	}

	return Graph;
}

void TopSort(LGraph Graph)
{
	int Indegree[MaxVertexNum];//入度
	int cnt = 0;
	Vertex V;
	PtrToAdjVNode W;
	SqQueue Q;
	//初始化队列
	InitQueue(&Q);

	//初始化入度
	for (V = 0; V < Graph->Nv; V++)
	{
		Indegree[V] = 0;
	}
		
	//遍历图得到所有点的入度
	for ( V = 0; V < Graph->Nv; V++)
	{
		for ( W = Graph->G[V].FirstEdge; W ; W = W->Next)
		{
			Indegree[W->AdjV]++;
		}
	}

	//将所有入度为零的点入队
	for (V = 0; V < Graph->Nv; V++)
	{
		if (Indegree[V] == 0)
		{
			EnQueue(&Q, V);
		}
	}

	//出队后删除入度
	while (!IsEmpty(Q))
	{
		 DeQueue(&Q,&V);
		 TopOrder[cnt++] = V;

		 for ( W = Graph->G[V].FirstEdge; W ; W = W->Next)
		 {
			 if (--Indegree[W->AdjV] == 0)//删除入度
			 {
				 EnQueue(&Q,W->AdjV);
			 }
		 }
		 printf("\n");
		 printf("%d\t",V);
	}

}
相关标签: 数据结构