欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

已知三点求平面法向量

程序员文章站 2022-03-02 11:55:00
...

空间已知三点的位置p1(x1,y1,z1),p2(x2,y2,z2),p3(x3,y3,z3),令它们逆时针在空间摆放。这样就可以得到平面的两个向量p1p2(x2-x1,y2-y1,z2-z1),p1p3(x3-x1,y3-y1,z3-z1),而平面法线总是和这两个向量垂直。也就是说,p1p2与p1p3的向量积就是平面的法向量n。

复习一下向量积,已知向量

a=(a1,a2,a3) b=(b1,b2,b3)
其向量积可表示为:
a×b=(a2b3-a3b2,a3b1-a1b3,a1b2-a2b1)

将其套入到p1p2和p1p3即可。
具体实现代码如下:

#include<iostream>

using namespace std;

//三维double矢量
struct Vec3d
{
	double x, y, z;

	Vec3d()
	{
		x = 0.0;
		y = 0.0;
		z = 0.0;
	}
	Vec3d(double dx, double dy, double dz)
	{
		x = dx;
		y = dy;
		z = dz;
	}
	void Set(double dx, double dy, double dz)
	{
		x = dx;
		y = dy;
		z = dz;
	}
};

//计算三点成面的法向量
void Cal_Normal_3D(const Vec3d& v1, const Vec3d& v2, const Vec3d& v3, Vec3d &vn)
{
	//v1(n1,n2,n3);
	//平面方程: na * (x – n1) + nb * (y – n2) + nc * (z – n3) = 0 ;
	double na = (v2.y - v1.y)*(v3.z - v1.z) - (v2.z - v1.z)*(v3.y - v1.y);
	double nb = (v2.z - v1.z)*(v3.x - v1.x) - (v2.x - v1.x)*(v3.z - v1.z);
	double nc = (v2.x - v1.x)*(v3.y - v1.y) - (v2.y - v1.y)*(v3.x - v1.x);

	//平面法向量
	vn.Set(na, nb, nc);
}

int main()
{	
	Vec3d v1(1.0, 5.2, 3.7);
	Vec3d v2(2.8, 3.9, 4.5);
	Vec3d v3(7.6, 8.4, 6.2);
	Vec3d vn;
	Cal_Normal_3D(v1, v2, v3, vn);
	cout <<"法向量为:"<< vn.x << '\t' << vn.y << '\t' << vn.z << '\n';

	return 0;
}

对于一个空间的平面而言,其法向量可以是两个方向,可以向上也可以向下。所以在OpenGL中默认规定的也是右手法则,右手除拇指之外的四指根据点的逆时针握住,大拇指的方向即为法线方向。其逆时针的一面为正面,可以接受到光照;顺时针为反面,无法接受光照。