欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页  >  IT编程

LOJ#6281. 数列分块入门 5

程序员文章站 2022-11-02 12:27:26
内存限制:256 MiB时间限制:500 ms标准输入输出 题目类型:传统评测方式:文本比较 上传者: hzwer 内存限制:256 MiB时间限制:500 ms标准输入输出 题目类型:传统评测方式:文本比较 上传者: hzwer 提交提交记录统计讨论 1 测试数据 题目描述 给出一个长为 nnn  ......
内存限制:256 MiB时间限制:500 ms标准输入输出
题目类型:传统评测方式:文本比较
上传者: hzwer

题目描述

给出一个长为 nnn 的数列,以及 nnn 个操作,操作涉及区间开方,区间求和。

输入格式

第一行输入一个数字 nnn。

第二行输入 nnn 个数字,第 i 个数字为 aia_iai​​,以空格隔开。

接下来输入 nnn 行询问,每行输入四个数字 opt\mathrm{opt}opt、lll、rrr、ccc,以空格隔开。

若 opt=0\mathrm{opt} = 0opt=0,表示将位于 [l,r][l, r][l,r] 的之间的数字都开方。

若 opt=1\mathrm{opt} = 1opt=1,表示询问位于 [l,r][l, r][l,r] 的所有数字的和。

输出格式

对于每次询问,输出一行一个数字表示答案。

样例

样例输入

4
1 2 2 3
0 1 3 1
1 1 4 4
0 1 2 2
1 1 2 4

样例输出

6
2

数据范围与提示

对于 100% 100\%100% 的数据,1≤n≤50000,−231≤others 1 \leq n \leq 50000, -2^{31} \leq \mathrm{others}1n50000,231​​others、ans≤231−1 \mathrm{ans} \leq 2^{31}-1ans231​​1。

 

 

这道题的难点在于如何维护开根这个神奇的操作

我自己测的是1e7的数差不多开五六次根就会变成1,所以我们直接维护整个块内的数是否变成了1就可以了

 

#include<cstdio>
#include<iostream>
#include<cstring>
#include<algorithm>
#include<cmath>
#include<vector>
#define int long long 
using namespace std;
const int MAXN=1e5+10;
const int INF=1e8+10;
inline char nc()
{
    static char buf[MAXN],*p1=buf,*p2=buf;
    return p1==p2&&(p2=(p1=buf)+fread(buf,1,MAXN,stdin),p1==p2)?EOF:*p1++;
}
inline int read()
{
    char c=nc();int x=0,f=1;
    while(c<'0'||c>'9'){if(c=='-')f=-1;c=nc();}
    while(c>='0'&&c<='9'){x=x*10+c-'0';c=nc();}
    return x*f;
}
int N;
int a[MAXN],block,L[MAXN],R[MAXN],belong[MAXN],sum[MAXN],flag[MAXN];

void Sqrt(int l,int r)
{
	for(int i=l;i<=min(r,R[l]);i++)
	{
		sum[belong[i]]-=a[i];
		a[i]=sqrt(a[i]);
		sum[belong[i]]+=a[i];
	}
	if(belong[l]!=belong[r])
		for(int i=L[r];i<=r;i++)
			sum[belong[i]]-=a[i],a[i]=sqrt(a[i]),sum[belong[i]]+=a[i];
	for(int i=belong[l]+1;i<=belong[r]-1;i++)
	{
		if(flag[i]) {continue;}
		flag[i]=1;
		for(int j=L[i*block];j<=R[i*block];j++)
		{
			sum[i]-=a[j];
			a[j]=sqrt(a[j]);
			sum[i]+=a[j];
			if(a[j]>1) flag[i]=0;
		}
	}
}
int Query(int l,int r)
{
	int ans=0;
	for(int i=l;i<=min(r,R[l]);i++)
		ans+=a[i];
	if(belong[l]!=belong[r])
		for(int i=L[r];i<=r;i++)
			ans+=a[i];
	for(int i=belong[l]+1;i<=belong[r]-1;i++)
		ans+=sum[i];
	return ans;
}
main()
{
    #ifdef WIN32
    freopen("a.in","r",stdin);
   // freopen("b.out","w",stdout);
    #else
    #endif
	N=read();block=sqrt(N);
	for(int i=1;i<=N;i++) a[i]=read();
	for(int i=1;i<=N;i++) belong[i]=(i-1)/block+1,L[i]=(belong[i]-1)*block+1,R[i]=belong[i]*block;
	for(int i=1;i<=N;i++) sum[belong[i]]+=a[i];
	for(int i=1;i<=N;i++)
	{
		int opt=read(),l=read(),r=read(),c=read();
		if(opt==0) 
			Sqrt(l,r); 
		else  
			printf("%d\n",Query(l,r));
	}
    return 0;
}