Java普利姆算法和克鲁斯卡尔算法
程序员文章站
2022-07-13 08:36:32
...
常用算法
一、普利姆算法
1. 应用场景–修路问题
- 一个地区有7个村庄(A,B,C,D,E,F,G),现在需要修路把7个村庄连通
- 各个村庄的距离用边上的权值表示,比如A–B的距离为5公里
- 要保证各个村子连通,且总的公路里程最短
2. 最小生成树
- 给定一个带权的无向连通图,如何选择一棵生成树,使树上所有的边上的权的总和为最小,则此树称为最小生成树
- N个顶点一定有N-1条边
- 包含全部顶点
3. 算法概述
- 普利姆算法求最小生成树,也就是包含n个顶点的连通图中,找出(n-1)条边包含所有n个顶点的连通子图,也就是极小连通子图
- 设G=(V,E)是连通网,T=(U,D)是最小生成树,V,U是顶点集合,E,D是边的集合
- 若顶点u开始构造最小生成树,则从集合V中取出顶点u放入集合U中,标记顶点v的visited[u]=1
- 若集合U中顶点ui与集合V-U中的顶点vj之间存在边,则寻找这些边中权值最小的边,但不能构成回路,将顶点vj加入集合U中,将边(ui,vj)加入集合D中,标记visited[vj]=1
- 重复步骤3,知道U与V相等,即所有顶点都被标记为访问过,此时D中有n-1条边
4. 代码演示
package Algorithm;
import java.util.Arrays;
/**
* @author DELL
* @Date 2020/2/19 19:29
**/
public class PrimAlgorithm {
public static void main(String[] args) {
char[] data = {'A', 'B', 'C', 'D', 'E', 'F', 'G'};
int vertex = data.length;
//10000表示两个点不连通
int[][] weight = {
{10000, 5, 7, 10000, 10000, 10000, 2},
{5, 10000, 10000, 9, 10000, 10000, 3},
{7, 10000, 10000, 10000, 8, 10000, 10000},
{10000, 9, 10000, 10000, 10000, 4, 10000},
{10000, 10000, 8, 10000, 10000, 5, 4},
{10000, 10000, 10000, 4, 5, 10000, 6},
{2, 3, 10000, 10000, 4, 6, 10000},};
Graph graph = new Graph(vertex);
MinTree minTree = new MinTree();
minTree.createGraph(graph, vertex, data, weight);
minTree.prim(graph, 0);
}
}
class MinTree {
/**
* 创建图的邻接矩阵
*
* @param graph 图对象
* @param vertex 图对应的顶点个数
* @param data 图的各个顶点的值
* @param weight 图的邻接矩阵的权值
*/
public void createGraph(Graph graph, int vertex, char[] data, int[][] weight) {
for (int i = 0; i < vertex; i++) {
graph.data[i] = data[i];
for (int j = 0; j < vertex; j++) {
graph.weight[i][j] = weight[i][j];
}
}
}
/**
* 生成最小生成树
*
* @param graph 图对象
* @param v 表示从第v个节点开始
*/
public void prim(Graph graph, int v) {
//表示节点是否被访问过,访问过用1表示
int[] visited = new int[graph.vertex];
//把当前节点表示为已访问
visited[v] = 1;
//h1和h2用来标记加入最小生成树中的节点坐标
int h1 = -1;
int h2 = -1;
int minWeight = 10000;
for (int i = 1; i < graph.vertex; i++) {//有graph.vertex个顶点,需要生成graph.vertex-1条边,所以i从1开始
for (int j = 0; j < graph.vertex; j++) {
for (int k = 0; k < graph.vertex; k++) {
if (visited[j] == 1 && visited[k] == 0 && graph.weight[j][k] < minWeight) {
minWeight = graph.weight[j][k];
h1 = j;
h2 = k;
}
}
}
//找到一条最小边
System.out.println("边<" + graph.data[h1] + "," + graph.data[h2] + ">权值:" + minWeight);
//将节点标记为已经访问过
visited[h2] = 1;
//重置minWeight
minWeight = 10000;
}
}
}
class Graph {
int vertex;//表示图的节点个数
char[] data;
int[][] weight;
public Graph(int vertex) {
this.vertex = vertex;
this.data = new char[vertex];
this.weight = new int[vertex][vertex];
}
}
二、克鲁斯卡尔算法
1. 应用场景–公交站问题
- 某个城市新增7个站点(A,B,C,D,E,F,G),现在需要修路把7个站点连通
- 各个站点的距离用边线表示(权),例如A-B距离12公里
- 问:如何保证各个站点都连通,并且总的修建公路总里程最短?
2. 算法概述
- 克鲁斯卡尔(Kruskal)算法,是用来求加权连通图的最小生成树的算法
- 基本思想:按照权值从小到大的顺序选择n-1条边,并保证n-1条边不构成回路
- 具体做法:首先构造一个只含有n个顶点的森林,然后依权值从小到大从连通网中选择加入到森林中,并是森林中不产生回路,直到森林变成一棵树为止
3. 代码演示
package Algorithm;
import java.util.Arrays;
/**
* @author DELL
* @Date 2020/2/20 17:11
**/
public class KruskalCrAlgorithm {
private int edgeNum;//边的个数
private char[] vertex;//顶点个数
private int[][] matrix;//邻接矩阵
private static final int INF = Integer.MAX_VALUE;
public static void main(String[] args) {
char[] vertex = {'A', 'B', 'C', 'D', 'E', 'F', 'G'};
int[][] matrix = {
{0, 12, INF, INF, INF, 16, 14},
{12, 0, 10, INF, INF, 7, INF},
{INF, 10, 0, 3, 5, 6, INF},
{INF, INF, 3, 0, 4, INF, INF},
{INF, INF, 5, 4, 0, 2, 8},
{16, 7, 6, INF, 2, 0, 9},
{14, INF, INF, INF, 8, 9, 0}};
KruskalCrAlgorithm kruskal = new KruskalCrAlgorithm(vertex, matrix);
kruskal.kruskal();
}
public KruskalCrAlgorithm(char[] vertex, int[][] matrix) {
int len = vertex.length;
this.vertex = new char[len];
//使用赋值拷贝方式初始化
for (int i = 0; i < len; i++) {
this.vertex[i] = vertex[i];
}
this.matrix = new int[len][len];
for (int i = 0; i < matrix.length; i++) {
for (int j = 0; j < matrix[0].length; j++) {
this.matrix[i][j] = matrix[i][j];
}
}
//统计边的个数
for (int i = 0; i < len; i++) {
for (int j = i + 1; j < len; j++) {
if (matrix[i][j] != INF) {
edgeNum++;
}
}
}
}
/**
* 克鲁斯卡尔算法核心
*/
public void kruskal() {
int index = 0;//表示最后结果数组的索引
int[] ends = new int[edgeNum];//保存最小生成树中顶点对应的终点的下标
EdgeData[] result = new EdgeData[edgeNum];//用于保存最小生成树的结果
EdgeData[] edges = getEdges();//获取图中所有的边
sortEdges(edges);//对边从小到大排序
//遍历edges,将边添加到最小生成树中
for (int i = 0; i < edgeNum; i++) {
//获取边的起点
int p1 = getPosition(edges[i].start);//p1=4
//获取边的终点
int p2 = getPosition(edges[i].end);//p2=5
//获取p1在最小生成树中的终点
int m = getEnd(ends, p1);//m=4
//获取p2在最小生成树中的终点
int n = getEnd(ends, p2);//n=5
//判断p1和p2是否构成回路
if (m != n) {//没有构成回路
ends[m] = n;//设置m在最小生成树中的终点为n,例如<E,F>[0,0,0,0,5,0,0,0,0,0,0,0]即4的终点为5
result[index++] = edges[i];//将一条边加入数组中
}
}
//打印最小生成树
for (int i = 0; i < index; i++) {
System.out.println(result[i]);
}
}
/**
* 对边进行排序
*
* @param edges
*/
public void sortEdges(EdgeData[] edges) {
for (int i = 0; i < edges.length - 1; i++) {
for (int j = 0; j < edges.length - 1 - i; j++) {
if (edges[j].weight > edges[j + 1].weight) {
EdgeData temp = edges[j + 1];
edges[j + 1] = edges[j];
edges[j] = temp;
}
}
}
}
/**
* 返回顶点对应的下标
*
* @param ch
* @return 找到则返回对应下标,否则返回-1
*/
private int getPosition(char ch) {
for (int i = 0; i < vertex.length; i++) {
if (vertex[i] == ch) {//找到
return i;
}
}
//没找到
return -1;
}
/**
* 获取图中的边,存放在数组中
*
* @return 返回对应的数组
*/
private EdgeData[] getEdges() {
int index = 0;
EdgeData[] edges = new EdgeData[edgeNum];
for (int i = 0; i < vertex.length; i++) {
for (int j = i + 1; j < vertex.length; j++) {
if (matrix[i][j] != INF) {
edges[index++] = new EdgeData(vertex[i], vertex[j], matrix[i][j]);
}
}
}
return edges;
}
/**
* 获取下标为i的顶点的终点
*
* @param ends 数组记录各个顶点对应的终点是哪一个
* @param i 传入顶点对应的下标
* @return 返回下标为i的这个顶点对应的终点的下标
*/
private int getEnd(int[] ends, int i) {
while (ends[i] != 0) {
i = ends[i];
}
return i;
}
}
//边的信息
class EdgeData {
char start;//边的起点
char end;//边的终点
int weight;//边的权值
public EdgeData(char start, char end, int weight) {
this.start = start;
this.end = end;
this.weight = weight;
}
@Override
public String toString() {
return "EdgeData <" + start + "," + end + ">=" + weight;
}
}