PHP实现图的邻矩阵及普利姆算法(Prim)
程序员文章站
2022-06-15 17:15:35
...
- require 'mGraph.php';
- $a = array('a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i');
- $b = array('ab'=>'10', 'af'=>'11', 'bg'=>'16', 'fg'=>'17', 'bc'=>'18', 'bi'=>'12', 'ci'=>'8', 'cd'=>'22', 'di'=>'21', 'dg'=>'24', 'gh'=>'19', 'dh'=>'16', 'de'=>'20', 'eh'=>'7','fe'=>'26');//键为边,值权值
- $test = new MGraph($a, $b);
- print_r($test->prim());
- ?>
- //mGraph.php
- class MGraph{
- private $vexs; //顶点数组
- private $arc; //边邻接矩阵,即二维数组
- private $arcData; //边的数组信息
- private $direct; //图的类型(无向或有向)
- private $hasList; //尝试遍历时存储遍历过的结点
- private $queue; //广度优先遍历时存储孩子结点的队列,用数组模仿
- private $infinity = 65535;//代表无穷,即两点无连接,建带权值的图时用,本示例不带权值
- private $primVexs; //prim算法时保存顶点
- private $primArc; //prim算法时保存边
- public function MGraph($vexs, $arc, $direct = 0){
- $this->vexs = $vexs;
- $this->arcData = $arc;
- $this->direct = $direct;
- $this->initalizeArc();
- $this->createArc();
- }
- private function initalizeArc(){
- foreach($this->vexs as $value){
- foreach($this->vexs as $cValue){
- $this->arc[$value][$cValue] = ($value == $cValue ? 0 : $this->infinity);
- }
- }
- }
- //创建图 $direct:0表示无向图,1表示有向图
- private function createArc(){
- foreach($this->arcData as $key=>$value){
- $strArr = str_split($key);
- $first = $strArr[0];
- $last = $strArr[1];
- $this->arc[$first][$last] = $value;
- if(!$this->direct){
- $this->arc[$last][$first] = $value;
- }
- }
- }
- //prim算法,生成最小生成树
- public function prim(){
- $this->primVexs = array();
- $this->primArc = array($this->vexs[0]=>0);
- for($i = 1; $i count($this->vexs); $i ++){
- $this->primArc[$this->vexs[$i]] = $this->arc[$this->vexs[0]][$this->vexs[$i]];
- $this->primVexs[$this->vexs[$i]] = $this->vexs[0];
- }
- for($i = 0; $i count($this->vexs); $i ++){
- $min = $this->infinity;
- $key;
- foreach($this->vexs as $k=>$v){
- if($this->primArc[$v] != 0 && $this->primArc[$v] $min){
- $key = $v;
- $min = $this->primArc[$v];
- }
- }
- $this->primArc[$key] = 0;
- foreach($this->arc[$key] as $k=>$v){
- if($this->primArc[$k] != 0 && $v $this->primArc[$k]){
- $this->primArc[$k] = $v;
- $this->primVexs[$k] = $key;
- }
- }
- }
- return $this->primVexs;
- }
- //一般算法,生成最小生成树
- public function bst(){
- $this->primVexs = array($this->vexs[0]);
- $this->primArc = array();
- next($this->arc[key($this->arc)]);
- $key = NULL;
- $current = NULL;
- while(count($this->primVexs) count($this->vexs)){
- foreach($this->primVexs as $value){
- foreach($this->arc[$value] as $k=>$v){
- if(!in_array($k, $this->primVexs) && $v != 0 && $v != $this->infinity){
- if($key == NULL $v $current)){
- $key = $k;
- $current = array($value . $k=>$v);
- }
- }
- }
- }
- $this->primVexs[] = $key;
- $this->primArc[key($current)] = current($current);
- $key = NULL;
- $current = NULL;
- }
- return array('vexs'=>$this->primVexs, 'arc'=>$this->primArc);
- }
- //一般遍历
- public function reserve(){
- $this->hasList = array();
- foreach($this->arc as $key=>$value){
- if(!in_array($key, $this->hasList)){
- $this->hasList[] = $key;
- }
- foreach($value as $k=>$v){
- if($v == 1 && !in_array($k, $this->hasList)){
- $this->hasList[] = $k;
- }
- }
- }
- foreach($this->vexs as $v){
- if(!in_array($v, $this->hasList))
- $this->hasList[] = $v;
- }
- return implode($this->hasList);
- }
- //广度优先遍历
- public function bfs(){
- $this->hasList = array();
- $this->queue = array();
- foreach($this->arc as $key=>$value){
- if(!in_array($key, $this->hasList)){
- $this->hasList[] = $key;
- $this->queue[] = $value;
- while(!emptyempty($this->queue)){
- $child = array_shift($this->queue);
- foreach($child as $k=>$v){
- if($v == 1 && !in_array($k, $this->hasList)){
- $this->hasList[] = $k;
- $this->queue[] = $this->arc[$k];
- }
- }
- }
- }
- }
- return implode($this->hasList);
- }
- //执行深度优先遍历
- public function excuteDfs($key){
- $this->hasList[] = $key;
- foreach($this->arc[$key] as $k=>$v){
- if($v == 1 && !in_array($k, $this->hasList))
- $this->excuteDfs($k);
- }
- }
- //深度优先遍历
- public function dfs(){
- $this->hasList = array();
- foreach($this->vexs as $key){
- if(!in_array($key, $this->hasList))
- $this->excuteDfs($key);
- }
- return implode($this->hasList);
- }
- //返回图的二维数组表示
- public function getArc(){
- return $this->arc;
- }
- //返回结点个数
- public function getVexCount(){
- return count($this->vexs);
- }
- }
- ?>
上一篇: PHP命令行如何判断有管道数据输入
推荐阅读
-
PHP实现图的邻接矩阵表示及几种简单遍历算法分析
-
PHP实现图的邻矩阵及普利姆算法(Prim)
-
邻接矩阵prim:php实现图的邻接矩阵及普里姆(prim算法),弗洛伊德(floyd),迪杰斯特拉(dijkstra)算法
-
邻接矩阵prim:php实现图的邻接矩阵及普里姆(prim算法),弗洛伊德(floyd),迪杰斯特拉(dijkstra)算法
-
PHP实现图的邻接矩阵表示及几种简单遍历算法分析
-
PHP实现图的邻接矩阵表示及遍历算法
-
【C++】图的实现深度、广度遍历,普利姆算法,克鲁斯卡尔算法
-
PHP实现图的邻接矩阵表示及遍历算法
-
es 实现图的基本算法 图的深度优先搜索 广度优先搜索 普利姆算法