欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页  >  科技

Tensorflow学习-MNIST数据集

程序员文章站 2022-06-15 20:26:55
mnist-softmax#导入数据集from keras.datasets import mnist(x_train,y_train),(x_test,y_test)=mnist.load_data('E:/TensorFlow_mnist/MNIST_data/mnist.npz')print(x_train.shape,type(x_train)) #60000张28*28的图片print(y_train.shape,type(y_train)) #60000个标签......

Tensorflow学习-MNIST数据集

Softmax

①数据集导入,keras自带的下载或者从某盘提取点击获取数据集,提取码:45yf

#导入数据集
from keras.datasets import mnist
(x_train,y_train),(x_test,y_test)=mnist.load_data('E:/TensorFlow_mnist/MNIST_data/mnist.npz')

print(x_train.shape,type(x_train))  #60000张28*28的图片
print(y_train.shape,type(y_train))  #60000个标签

②图像和数据类型的转化

#将图像28*28的转换成784
X_train = x_train.reshape(60000,784)
X_test = x_test.reshape(10000,784)
print(X_train.shape,type(X_train))
print(X_test.shape,type(X_test))


#将数据转换为float32
X_train=X_train.astype('float32')
X_test=X_test.astype('float32')
#数据归一化
X_train/=255
X_test/=255

③统计训练数据集中各标签的数量并可视化展示

#统计训练数据中的各标签数量
import numpy as np
import matplotlib.pyplot as plt

label,count=np.unique(y_train,return_counts=True)
print(label,count)
#lable的可视化输出
fig = plt.figure()
plt.bar(label,count,width=0.7,align='center')
plt.title("Label Distribution")
plt.xlabel("Label")
plt.ylabel("Count")
plt.xticks(label)
plt.ylim(0,7500)
for a,b in zip(label,count):
    plt.text(a,b,'%d' %b,ha='center',va='bottom',fontsize=10)
    
plt.show()

输出结果:Tensorflow学习-MNIST数据集

④标签编码
one-hot编码的实现

rom keras.utils import  np_utils

n_classes=10
print("Shape before one-hot encoding: ",y_train.shape)
Y_train=np.utils.to_categorical(y_train,n_classes)
print("Shape after one-hot encoding: ",Y_train.shape)
Y_test = np_utils.to_categorical(y_test,n_classes)

print(y_train[0])
print(Y_train[0])

可以看看输出为:

5 #one-hot之前的标签
[0. 0. 0. 0. 0. 1. 0. 0. 0. 0.]  #one-hot之后的标签

⑤定义神经网络
使用Keras sequential model定义神经网络

from keras.utils import  np_utils

n_classes=10
print("Shape before one-hot encoding: ",y_train.shape)
Y_train=np_utils.to_categorical(y_train,n_classes)
print("Shape after one-hot encoding: ",Y_train.shape)
Y_test = np_utils.to_categorical(y_test,n_classes)

# print(y_train[0])
# print(Y_train[0])

from keras.models import Sequential
from keras.layers.core import Dense,Activation

model = Sequential()
model.add(Dense(512,input_shape=(784,)))#全连接网络,512个神经元。输入784长度的向量对应输入的28*28
model.add(Activation('relu'))#激活函数选择relu

model.add(Dense(512))#全连接网络,512个神经元。输入的是上一层输出的数据
model.add(Activation('relu'))#激活函数为relu

model.add(Dense(10))
model.add(Activation('softmax'))

编译模型

model.compile(loss='categorical_crossentropy',metrics=['accuracy'],optimizer='adam')
#这一步之后得到了完整的数据流图

训练模型,并将指标保存到history中

history = model.fit(X_train,
                    Y_train,
                    batch_size=128,#每次128张图
                    epochs=5,#一共训练5次60000张图,总30W图
                    verbose=2,
                    validation_data=(X_test,Y_test))

结果显示:

Epoch 1/5
 - 7s - loss: 0.2156 - acc: 0.9358 - val_loss: 0.1063 - val_acc: 0.9676
Epoch 2/5
 - 5s - loss: 0.0797 - acc: 0.9757 - val_loss: 0.0754 - val_acc: 0.9764
Epoch 3/5
 - 5s - loss: 0.0496 - acc: 0.9842 - val_loss: 0.0675 - val_acc: 0.9778
Epoch 4/5
 - 5s - loss: 0.0345 - acc: 0.9889 - val_loss: 0.0745 - val_acc: 0.9780
Epoch 5/5
 - 5s - loss: 0.0249 - acc: 0.9918 - val_loss: 0.0763 - val_acc: 0.9790

⑥指标可视化展示

fig = plt.figure()
plt.subplot(2,1,1)
plt.plot(history.history['acc'])
plt.plot(history.history['val_acc'])#测试集的准确率
plt.title('Model Accuracy')
plt.ylabel('accuracy')
plt.xlabel('epoch')
plt.legend(['train','test'],loc='lower right')

plt.subplot(2,1,2)
plt.plot(history.history['loss'])
plt.plot(history.history['val_loss'])
plt.title('Model Loss')
plt.ylabel('loss')
plt.xlabel('epoch')
plt.legend(['train','test'],loc='upper right')

plt.show()

图表展示:
Tensorflow学习-MNIST数据集
⑦保存模型
keras将模型保存成HDF5文件格式

import os
import tensorflow.gfile as gfile

save_dir = "../TensorFlow_mnist/model"

if gfile.Exists(save_dir):
    gfile.DeleteRecursively(save_dir)
gfile.MakeDirs(save_dir)

model_name = 'keras_mnist.h5'
model_path=os.path.join(save_dir,model_name)
model.save(model_path)
print('Saved trained model at %s' %model_path)

保存为如下形式
Tensorflow学习-MNIST数据集
⑧加载模型

from keras.models import load_model

mnist_modle = load_model(model_path)

loss_and_metrics=mnist_modle.evaluate(X_test,Y_test,verbose=2)

print("Test Loss:{}".format(loss_and_metrics[0]))
print("Test Accuracy:{}%".format(loss_and_metrics[1]*100))

predicted_classes = mnist_modle.predict_calsses(X_test)

correct_indices = np.nonzero(predicted_classes==y_test)[0]
incorrect_indices=np.nonzero(predicted_classes!=y_test)[0]
print("Classified correctly count: {}".format(len(correct_indices)))
print("Classified incorrectly count: {}".format(len(incorrect_indices)))

本文地址:https://blog.csdn.net/weixin_48905043/article/details/107664065

相关标签: TensorFlow学习