欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页  >  IT编程

详解tensorflow训练自己的数据集实现CNN图像分类

程序员文章站 2023-03-28 09:33:47
利用卷积神经网络训练图像数据分为以下几个步骤 1.读取图片文件 2.产生用于训练的批次 3.定义训练的模型(包括初始化参数,卷积、池化层等参数、网络) 4.训练...

利用卷积神经网络训练图像数据分为以下几个步骤

1.读取图片文件
2.产生用于训练的批次
3.定义训练的模型(包括初始化参数,卷积、池化层等参数、网络)
4.训练

1 读取图片文件

def get_files(filename):
  class_train = []
  label_train = []
  for train_class in os.listdir(filename):
    for pic in os.listdir(filename+train_class):
      class_train.append(filename+train_class+'/'+pic)
      label_train.append(train_class)
  temp = np.array([class_train,label_train])
  temp = temp.transpose()
  #shuffle the samples
  np.random.shuffle(temp)
  #after transpose, images is in dimension 0 and label in dimension 1
  image_list = list(temp[:,0])
  label_list = list(temp[:,1])
  label_list = [int(i) for i in label_list]
  #print(label_list)
  return image_list,label_list

这里文件名作为标签,即类别(其数据类型要确定,后面要转为tensor类型数据)。

然后将image和label转为list格式数据,因为后边用到的的一些tensorflow函数接收的是list格式数据。

2 产生用于训练的批次

def get_batches(image,label,resize_w,resize_h,batch_size,capacity):
  #convert the list of images and labels to tensor
  image = tf.cast(image,tf.string)
  label = tf.cast(label,tf.int64)
  queue = tf.train.slice_input_producer([image,label])
  label = queue[1]
  image_c = tf.read_file(queue[0])
  image = tf.image.decode_jpeg(image_c,channels = 3)
  #resize
  image = tf.image.resize_image_with_crop_or_pad(image,resize_w,resize_h)
  #(x - mean) / adjusted_stddev
  image = tf.image.per_image_standardization(image)
  
  image_batch,label_batch = tf.train.batch([image,label],
                       batch_size = batch_size,
                       num_threads = 64,
                       capacity = capacity)
  images_batch = tf.cast(image_batch,tf.float32)
  labels_batch = tf.reshape(label_batch,[batch_size])
  return images_batch,labels_batch

首先使用tf.cast转化为tensorflow数据格式,使用tf.train.slice_input_producer实现一个输入的队列。

label不需要处理,image存储的是路径,需要读取为图片,接下来的几步就是读取路径转为图片,用于训练。

CNN对图像大小是敏感的,第10行图片resize处理为大小一致,12行将其标准化,即减去所有图片的均值,方便训练。

接下来使用tf.train.batch函数产生训练的批次。

最后将产生的批次做数据类型的转换和shape的处理即可产生用于训练的批次。

3 定义训练的模型

(1)训练参数的定义及初始化

def init_weights(shape):
  return tf.Variable(tf.random_normal(shape,stddev = 0.01))
#init weights
weights = {
  "w1":init_weights([3,3,3,16]),
  "w2":init_weights([3,3,16,128]),
  "w3":init_weights([3,3,128,256]),
  "w4":init_weights([4096,4096]),
  "wo":init_weights([4096,2])
  }

#init biases
biases = {
  "b1":init_weights([16]),
  "b2":init_weights([128]),
  "b3":init_weights([256]),
  "b4":init_weights([4096]),
  "bo":init_weights([2])
  }

CNN的每层是y=wx+b的决策模型,卷积层产生特征向量,根据这些特征向量带入x进行计算,因此,需要定义卷积层的初始化参数,包括权重和偏置。其中第8行的参数形状后边再解释。

(2)定义不同层的操作

 def conv2d(x,w,b):
  x = tf.nn.conv2d(x,w,strides = [1,1,1,1],padding = "SAME")
  x = tf.nn.bias_add(x,b)
  return tf.nn.relu(x)

def pooling(x):
  return tf.nn.max_pool(x,ksize = [1,2,2,1],strides = [1,2,2,1],padding = "SAME")

def norm(x,lsize = 4):
  return tf.nn.lrn(x,depth_radius = lsize,bias = 1,alpha = 0.001/9.0,beta = 0.75)

这里只定义了三种层,即卷积层、池化层和正则化层

(3)定义训练模型

def mmodel(images):
  l1 = conv2d(images,weights["w1"],biases["b1"])
  l2 = pooling(l1)
  l2 = norm(l2)
  l3 = conv2d(l2,weights["w2"],biases["b2"])
  l4 = pooling(l3)
  l4 = norm(l4)
  l5 = conv2d(l4,weights["w3"],biases["b3"])
  #same as the batch size
  l6 = pooling(l5)
  l6 = tf.reshape(l6,[-1,weights["w4"].get_shape().as_list()[0]])
  l7 = tf.nn.relu(tf.matmul(l6,weights["w4"])+biases["b4"])
  soft_max = tf.add(tf.matmul(l7,weights["wo"]),biases["bo"])
  return soft_max

模型比较简单,使用三层卷积,第11行使用全连接,需要对特征向量进行reshape,其中l6的形状为[-1,w4的第1维的参数],因此,将其按照“w4”reshape的时候,要使得-1位置的大小为batch_size,这样,最终再乘以“wo”时,最终的输出大小为[batch_size,class_num]

(4)定义评估量

 def loss(logits,label_batches):
   cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=logits,labels=label_batches)
   cost = tf.reduce_mean(cross_entropy)
   return cost

  首先定义损失函数,这是用于训练最小化损失的必需量
 def get_accuracy(logits,labels):
   acc = tf.nn.in_top_k(logits,labels,1)
   acc = tf.cast(acc,tf.float32)
   acc = tf.reduce_mean(acc)
   return acc

评价分类准确率的量,训练时,需要loss值减小,准确率增加,这样的训练才是收敛的。

(5)定义训练方式

 def training(loss,lr):
   train_op = tf.train.RMSPropOptimizer(lr,0.9).minimize(loss)
   return train_op

有很多种训练方式,可以自行去官网查看,但是不同的训练方式可能对应前面的参数定义不一样,需要另行处理,否则可能报错。

 4 训练

def run_training():
  data_dir = 'C:/Users/wk/Desktop/bky/dataSet/'
  image,label = inputData.get_files(data_dir)
  image_batches,label_batches = inputData.get_batches(image,label,32,32,16,20)
  p = model.mmodel(image_batches)
  cost = model.loss(p,label_batches)
  train_op = model.training(cost,0.001)
  acc = model.get_accuracy(p,label_batches)
  
  sess = tf.Session()
  init = tf.global_variables_initializer()
  sess.run(init)
  
  coord = tf.train.Coordinator()
  threads = tf.train.start_queue_runners(sess = sess,coord = coord)
  
  try:
    for step in np.arange(1000):
      print(step)
      if coord.should_stop():
        break
      _,train_acc,train_loss = sess.run([train_op,acc,cost])
      print("loss:{} accuracy:{}".format(train_loss,train_acc))
  except tf.errors.OutOfRangeError:
    print("Done!!!")
  finally:
    coord.request_stop()
  coord.join(threads)
  sess.close()

神经网络训练的时候,我们需要将模型保存下来,方便后面继续训练或者用训练好的模型进行测试。因此,我们需要创建一个saver保存模型。

def run_training():
  data_dir = 'C:/Users/wk/Desktop/bky/dataSet/'
  log_dir = 'C:/Users/wk/Desktop/bky/log/'
  image,label = inputData.get_files(data_dir)
  image_batches,label_batches = inputData.get_batches(image,label,32,32,16,20)
  print(image_batches.shape)
  p = model.mmodel(image_batches,16)
  cost = model.loss(p,label_batches)
  train_op = model.training(cost,0.001)
  acc = model.get_accuracy(p,label_batches)
  
  sess = tf.Session()
  init = tf.global_variables_initializer()
  sess.run(init)
  saver = tf.train.Saver()
  coord = tf.train.Coordinator()
  threads = tf.train.start_queue_runners(sess = sess,coord = coord)
  
  try:
    for step in np.arange(1000):
      print(step)
      if coord.should_stop():
        break
      _,train_acc,train_loss = sess.run([train_op,acc,cost])
      print("loss:{} accuracy:{}".format(train_loss,train_acc))
      if step % 100 == 0:
        check = os.path.join(log_dir,"model.ckpt")
        saver.save(sess,check,global_step = step)
  except tf.errors.OutOfRangeError:
    print("Done!!!")
  finally:
    coord.request_stop()
  coord.join(threads)
  sess.close()

训练好的模型信息会记录在checkpoint文件中,大致如下: 

model_checkpoint_path: "C:/Users/wk/Desktop/bky/log/model.ckpt-100"
all_model_checkpoint_paths: "C:/Users/wk/Desktop/bky/log/model.ckpt-0"
all_model_checkpoint_paths: "C:/Users/wk/Desktop/bky/log/model.ckpt-100"

其余还会生成一些文件,分别记录了模型参数等信息,后边测试的时候程序会读取checkpoint文件去加载这些真正的数据文件

详解tensorflow训练自己的数据集实现CNN图像分类

构建好神经网络进行训练完成后,如果用之前的代码直接进行测试,会报shape不符合的错误,大致是卷积层的输入与图像的shape不一致,这是因为上篇的代码,将weights和biases定义在了模型的外面,调用模型的时候,出现valueError的错误。

详解tensorflow训练自己的数据集实现CNN图像分类

因此,我们需要将参数定义在模型里面,加载训练好的模型参数时,训练好的参数才能够真正初始化模型。重写模型函数如下

def mmodel(images,batch_size):
  with tf.variable_scope('conv1') as scope:
    weights = tf.get_variable('weights', 
                 shape = [3,3,3, 16],
                 dtype = tf.float32, 
                 initializer=tf.truncated_normal_initializer(stddev=0.1,dtype=tf.float32))
    biases = tf.get_variable('biases', 
                 shape=[16],
                 dtype=tf.float32,
                 initializer=tf.constant_initializer(0.1))
    conv = tf.nn.conv2d(images, weights, strides=[1,1,1,1], padding='SAME')
    pre_activation = tf.nn.bias_add(conv, biases)
    conv1 = tf.nn.relu(pre_activation, name= scope.name)
  with tf.variable_scope('pooling1_lrn') as scope:
    pool1 = tf.nn.max_pool(conv1, ksize=[1,2,2,1],strides=[1,2,2,1],
                padding='SAME', name='pooling1')
    norm1 = tf.nn.lrn(pool1, depth_radius=4, bias=1.0, alpha=0.001/9.0,
             beta=0.75,name='norm1')
  with tf.variable_scope('conv2') as scope:
    weights = tf.get_variable('weights',
                 shape=[3,3,16,128],
                 dtype=tf.float32,
                 initializer=tf.truncated_normal_initializer(stddev=0.1,dtype=tf.float32))
    biases = tf.get_variable('biases',
                 shape=[128], 
                 dtype=tf.float32,
                 initializer=tf.constant_initializer(0.1))
    conv = tf.nn.conv2d(norm1, weights, strides=[1,1,1,1],padding='SAME')
    pre_activation = tf.nn.bias_add(conv, biases)
    conv2 = tf.nn.relu(pre_activation, name='conv2')  
  with tf.variable_scope('pooling2_lrn') as scope:
    norm2 = tf.nn.lrn(conv2, depth_radius=4, bias=1.0, alpha=0.001/9.0,
             beta=0.75,name='norm2')
    pool2 = tf.nn.max_pool(norm2, ksize=[1,2,2,1], strides=[1,1,1,1],
                padding='SAME',name='pooling2')
  with tf.variable_scope('local3') as scope:
    reshape = tf.reshape(pool2, shape=[batch_size, -1])
    dim = reshape.get_shape()[1].value
    weights = tf.get_variable('weights',
                 shape=[dim,4096],
                 dtype=tf.float32,
                 initializer=tf.truncated_normal_initializer(stddev=0.005,dtype=tf.float32))
    biases = tf.get_variable('biases',
                 shape=[4096],
                 dtype=tf.float32, 
                 initializer=tf.constant_initializer(0.1))
    local3 = tf.nn.relu(tf.matmul(reshape, weights) + biases, name=scope.name) 
  with tf.variable_scope('softmax_linear') as scope:
    weights = tf.get_variable('softmax_linear',
                 shape=[4096, 2],
                 dtype=tf.float32,
                 initializer=tf.truncated_normal_initializer(stddev=0.005,dtype=tf.float32))
    biases = tf.get_variable('biases', 
                 shape=[2],
                 dtype=tf.float32, 
                 initializer=tf.constant_initializer(0.1))
    softmax_linear = tf.add(tf.matmul(local3, weights), biases, name='softmax_linear')
  return softmax_linear

测试训练好的模型

首先获取一张测试图像

 def get_one_image(img_dir):
   image = Image.open(img_dir)
   plt.imshow(image)
   image = image.resize([32, 32])
   image_arr = np.array(image)
   return image_arr

加载模型,计算测试结果

def test(test_file):
  log_dir = 'C:/Users/wk/Desktop/bky/log/'
  image_arr = get_one_image(test_file)
  
  with tf.Graph().as_default():
    image = tf.cast(image_arr, tf.float32)
    image = tf.image.per_image_standardization(image)
    image = tf.reshape(image, [1,32, 32, 3])
    print(image.shape)
    p = model.mmodel(image,1)
    logits = tf.nn.softmax(p)
    x = tf.placeholder(tf.float32,shape = [32,32,3])
    saver = tf.train.Saver()
    with tf.Session() as sess:
      ckpt = tf.train.get_checkpoint_state(log_dir)
      if ckpt and ckpt.model_checkpoint_path:
        global_step = ckpt.model_checkpoint_path.split('/')[-1].split('-')[-1]
        saver.restore(sess, ckpt.model_checkpoint_path)
        print('Loading success)
      else:
        print('No checkpoint')
      prediction = sess.run(logits, feed_dict={x: image_arr})
      max_index = np.argmax(prediction)
      print(max_index)

前面主要是将测试图片标准化为网络的输入图像,15-19是加载模型文件,然后将图像输入到模型里即可

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。