mnist数据集下载及相关配置
mnist数据集下载及相关配置
MNIST数据集是由0到9的数字图像构成的(下图)。训练图像有6万张, 测试图像有1万张,这些图像可以用于学习和推理。MNIST数据集的一般使用方法是,先用训练图像进行学习,再用学习到的模型度量能在多大程度 上对测试图像进行正确的分类。
然后讲如何配置:
先在D盘下新建一个文件夹:dataset
(路径为 D:/dataset
),然后进去新建一个txt文档,在这个文档上粘贴下面这段代码:
# coding: utf-8
try:
import urllib.request
except ImportError:
raise ImportError('You should use Python 3.x')
import os.path
import gzip
import pickle
import os
import numpy as np
url_base = 'http://yann.lecun.com/exdb/mnist/'
key_file = {
'train_img':'train-images-idx3-ubyte.gz',
'train_label':'train-labels-idx1-ubyte.gz',
'test_img':'t10k-images-idx3-ubyte.gz',
'test_label':'t10k-labels-idx1-ubyte.gz'
}
dataset_dir = os.path.dirname(os.path.abspath(__file__))
save_file = dataset_dir + "/mnist.pkl"
train_num = 60000
test_num = 10000
img_dim = (1, 28, 28)
img_size = 784
def _download(file_name):
file_path = dataset_dir + "/" + file_name
if os.path.exists(file_path):
return
print("Downloading " + file_name + " ... ")
urllib.request.urlretrieve(url_base + file_name, file_path)
print("Done")
def download_mnist():
for v in key_file.values():
_download(v)
def _load_label(file_name):
file_path = dataset_dir + "/" + file_name
print("Converting " + file_name + " to NumPy Array ...")
with gzip.open(file_path, 'rb') as f:
labels = np.frombuffer(f.read(), np.uint8, offset=8)
print("Done")
return labels
def _load_img(file_name):
file_path = dataset_dir + "/" + file_name
print("Converting " + file_name + " to NumPy Array ...")
with gzip.open(file_path, 'rb') as f:
data = np.frombuffer(f.read(), np.uint8, offset=16)
data = data.reshape(-1, img_size)
print("Done")
return data
def _convert_numpy():
dataset = {}
dataset['train_img'] = _load_img(key_file['train_img'])
dataset['train_label'] = _load_label(key_file['train_label'])
dataset['test_img'] = _load_img(key_file['test_img'])
dataset['test_label'] = _load_label(key_file['test_label'])
return dataset
def init_mnist():
download_mnist()
dataset = _convert_numpy()
print("Creating pickle file ...")
with open(save_file, 'wb') as f:
pickle.dump(dataset, f, -1)
print("Done!")
def _change_one_hot_label(X):
T = np.zeros((X.size, 10))
for idx, row in enumerate(T):
row[X[idx]] = 1
return T
def load_mnist(normalize=True, flatten=True, one_hot_label=False):
"""读入MNIST数据集
Parameters
----------
normalize : 将图像的像素值正规化为0.0~1.0
one_hot_label :
one_hot_label为True的情况下,标签作为one-hot数组返回
one-hot数组是指[0,0,1,0,0,0,0,0,0,0]这样的数组
flatten : 是否将图像展开为一维数组
Returns
-------
(训练图像, 训练标签), (测试图像, 测试标签)
"""
if not os.path.exists(save_file):
init_mnist()
with open(save_file, 'rb') as f:
dataset = pickle.load(f)
if normalize:
for key in ('train_img', 'test_img'):
dataset[key] = dataset[key].astype(np.float32)
dataset[key] /= 255.0
if one_hot_label:
dataset['train_label'] = _change_one_hot_label(dataset['train_label'])
dataset['test_label'] = _change_one_hot_label(dataset['test_label'])
if not flatten:
for key in ('train_img', 'test_img'):
dataset[key] = dataset[key].reshape(-1, 1, 28, 28)
return (dataset['train_img'], dataset['train_label']), (dataset['test_img'], dataset['test_label'])
if __name__ == '__main__':
init_mnist()
接下来再按我的要求修改这段代码:
-
把第21行(或者在21行附近)修改:
# dataset_dir = os.path.dirname(os.path.abspath(__file__)) 这句代码注释掉 dataset_dir = 'D:/dataset/MNIST_data/' #添加这句代码 save_file = dataset_dir + "/mnist.pkl"
-
在31行(或附近)找到代码如下并修改:
# file_path = dataset_dir + "/" + file_name 这句注释掉 file_path = dataset_dir + file_name #添加这句代码
-
在47行(附近)找到下面两句代码并注释掉,然后在下一行添加新代码如下:
# file_path = dataset_dir + "/" + file_name 注释掉 # print("Converting " + file_name + " to NumPy Array ...") 注释掉 file_path = dataset_dir + file_name #添加这句代码
-
在58行(附近)找到代码并修改:
# file_path = dataset_dir + "/" + file_name 注释掉 file_path = dataset_dir + file_name #添加这句代码
-
完成,保存并重命名为
minist.py
文件
点击下载数据集 MNIST_data,(提取码:mnis
),下载后保存到dataset文件夹,然后选择解压到 MNIST_data
。
解压后如图所示:
然后在dataset文件夹下或其他任何地方创建 test.py
文件,粘贴下面的测试代码:
(注意:程序运行前确保你的python3已经安装好 numpy、PIL这两个库了)
# coding: utf-8
import sys
sys.path.append('D:/dataset') # 为了导入父目录的文件而进行的设定
import numpy as np
from mnist import load_mnist
from PIL import Image
def img_show(img):
pil_img = Image.fromarray(np.uint8(img))
pil_img.show()
(x_train, t_train), (x_test, t_test) = load_mnist(flatten=True, normalize=False)
print(x_train.shape)
img = x_train[0]
label = t_train[0]
print('显示的数字是:',label) # 5
print(img.shape) # (784,)
img = img.reshape(28, 28) # 把图像的形状变为原来的尺寸
print(img.shape) # (28, 28)
img_show(img)
如果正常运行程序并显示出数字图片就说明成功了。
本文地址:https://blog.csdn.net/m0_46079750/article/details/107494212
上一篇: oninput、onchange与onpropertychange事件的区别, 与input输入框实时检测
下一篇: tomact正常启动,但是在日志文件报错java.lang.NoClassDefFoundError: java/util/logging/Logger
推荐阅读
-
mnist数据集下载及相关配置
-
大数据学习的开始——java的下载及环境变量配置
-
elasticsearch7.5.0+kibana-7.5.0+cerebro-0.8.5集群生产环境安装配置及通过elasticsearch-migration工具做新老集群数据迁移
-
github下载下来的项目导入自己的本地后报错修改及配置相关解决办法
-
tensorflow使用卷积神经网络训练mnist数据集代码及结果
-
使用ODBC数据库管理Serv-U的FTP用户及相关ASP编程[附源码示例下载]
-
虚拟机及数据库相关配置(day8)
-
卷积神经网络实例及代码(MNIST数据集介绍、下载及基本操作)
-
mnist数据集下载及相关配置
-
MNIST数据集的介绍以及下载使用