欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页  >  IT编程

基于PyTorch的mnist数据集的分类

程序员文章站 2023-11-28 16:11:28
基于PyTorch的mnist数据集的分类简介代码实现1.相关包的导入2.数据集加载及处理3.加如LeNet模型及训练模型4.准确率变化图5.测试数据集及可视化预测结果6.Build_LeNet_for_mnist.py7.mnist_loader.py结果展示简介这里本人选用LeNet的卷积神经网络结构实现分类,实验训练10个epoch准确率高达99%,测试集准确率达99%。实现代码中对LeNet网络模型进行了一点改动,且模型代码定义在Build_LeNet_for_mnist.py文件中,数据加载不...

简介

这里本人选用LeNet的卷积神经网络结构实现分类,实验训练10个epoch准确率高达99%,测试集准确率达99%。实现代码中对LeNet网络模型进行了一点改动,且模型代码定义在Build_LeNet_for_mnist.py文件中,数据加载不是从网上下载的数据集,而是加载本地下载的数据集,其加载文件代码为mnist_loader.py,该文件是从pytorch的库文件torchvision.datasets.MNIST中改动的,需改动代码中的urls列表中的数据路径,如我的数据路径如代码中的file:///E:/PyCharmWorkSpace/Image_Set/mnist_data/train-images-idx3-ubyte.gz。代码在显卡上运行,网络中参数设置如代码中所示。

代码实现

1.相关包的导入

import torch
import mnist_loader
import Build_LeNet_for_mnist
import torch.nn.functional as F
import torch.optim as optim
from torchvision import transforms
import csv
import copy
import matplotlib.pyplot as plt
import numpy as np
import os
import pandas as pd

2.数据集加载及处理

#加载数据集
use_cuda=torch.cuda.is_available()##检测显卡是否可用
batch_size=test_batch_size=32
kwargs={'num_workers':0,'pin_memory':True}if use_cuda else {}
#训练数据加载
train_loader = torch.utils.data.DataLoader(
    mnist_loader.MNIST('./mnist_data',
                   train=True,
                   download=True,
                   transform=transforms.Compose([
                       transforms.ToTensor(),
                       transforms.Normalize((0.1307,), (0.3081,))
                   ])),  # 第一个参数dataset:数据集
    batch_size=batch_size,
    shuffle=True,  # 随机打乱数据
    **kwargs)  ##kwargs是上面gpu的设置
#测试数据加载
test_loader = torch.utils.data.DataLoader(
    mnist_loader.MNIST('./mnist_data',
                   train=False,  # 如果False,从test.pt创建数据集
                   transform=transforms.Compose([
                       transforms.ToTensor(),
                       transforms.Normalize((0.1307,), (0.3081,))
                   ])),
    batch_size=test_batch_size,
    shuffle=True,
    **kwargs)

3.加如LeNet模型及训练模型

#加入神经网络及参数设置
learning_rate=0.01
momentum=0.9
device = torch.device("cuda" if use_cuda else "cpu")
model=Build_LeNet_for_mnist.LeNet(1, 10).to(device)#加载模型
optimizer=optim.SGD(model.parameters(),lr=learning_rate,momentum=momentum)#优化器选择

#创建csv文件
csvFile = open("log.csv", "a+")        
writer = csv.writer(csvFile)    #创建写的对象
last_epoch=0
if os.path.exists("cifar10_cnn.pt"):
    print("load pretrain")
    model.load_state_dict(torch.load("cifar10_cnn.pt"))
    data = pd.read_csv('log.csv')
    e = data['epoch']
    last_epoch=e[len(e)-1]
else:
    print("first train")
    #先写入columns_name     
    writer.writerow(["epoch","acc","loss"])

#训练函数    
def train(model, device, train_loader, optimizer, last_epoch,epochs):
    best_model_wts = copy.deepcopy(model.state_dict())
    best_acc = 0.
    print("Train from Epoch: {}".format(last_epoch+1))
    model.train()  # 进入训练模式
    for epoch in range(1+last_epoch, epochs + 1+last_epoch):
        correct = 0
        for batch_idx, (data, target) in enumerate(train_loader):
            data, target = data.to(device), target.to(device)
            optimizer.zero_grad()
            output = model(data)
            loss = F.nll_loss(output, target)
            loss.backward()
            optimizer.step()
            pred = output.argmax(dim=1, keepdim=True)
            correct += pred.eq(target.view_as(pred)).sum().item()
            acc=100. * correct / len(train_loader.dataset)
        print("Train Epoch: {} Accuracy:{:0f}%\tLoss: {:.6f}".format(
            epoch,
            acc,
            loss.item()
        ))
        if acc > best_acc:
            best_acc = acc
            best_model_wts = copy.deepcopy(model.state_dict())
            #print(model.state_dict())
        writer.writerow([epoch,acc/100,loss.item()])
    return(best_model_wts)    
#开始训练和测试
epochs = 10
best_model_wts=train(model, device, train_loader, optimizer,last_epoch, epochs)

csvFile.close()
#保存训练模型
save_model = True
if (save_model):
    torch.save(best_model_wts,"mnist_LeNet.pt")
    #词典格式,model.state_dict()只保存模型参数

4.准确率变化可视化

#可视化准确率
data = pd.read_csv('log.csv')
epoch = data['epoch']
acc = data['acc']
loss = data['loss']

fig=plt.gcf()
fig.set_size_inches(10,4)
plt.title("Accuracy&Loss")
plt.xlabel("Training Epochs")
plt.ylabel("Value")
plt.plot(epoch,acc,label="Accuracy")
#plt.plot(epoch,loss,label="Loss")
plt.ylim((0,1.))
plt.xticks(np.arange(1, len(epoch+1), 1.0))
plt.yticks(np.arange(0, 1.5, 0.2))
plt.legend()
plt.show()

5.测试数据集及可视化预测结果

def test(model, device, test_loader):
    model.eval()  # 进入测试模式
    test_loss = 0
    correct = 0
    with torch.no_grad():
        for data, target in test_loader:
            data, target = data.to(device), target.to(device)
            output = model(data)
            test_loss += F.nll_loss(output, target, reduction='sum').item()
            pred = output.argmax(dim=1, keepdim=True)
            data_record=data[0:10]
            pred_record=pred.view_as(target)[0:10].cpu().numpy()
            target_record=target[0:10].cpu().numpy()
            correct += pred.eq(target.view_as(pred)).sum().item()
    test_loss /= len(test_loader.dataset)
    print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format(
        test_loss, correct, len(test_loader.dataset),
        100. * correct / len(test_loader.dataset)))
    return data_record,pred_record,target_record
data_record,pred_record,target_record=test(model, device, test_loader)

#可视化测试分类结果
#unloader = transforms.ToPILImage()
label_dict={0:"0",1:"1",2:"2",3:"3",4:"4",5:"5",6:"6",7:"7",8:"8",9:"9"}
def plot_images_labels_prediction(images,labels,prediction,idx,num=10):
    fig=plt.gcf()
    fig.set_size_inches(12,6)
    if num>10:
        num=10
    for i in range(0,num):
        image = images[idx].cpu().clone()
        image = image.squeeze(0) 
        #image = unloader(image)
        ax=plt.subplot(2,5,1+i)
        ax.imshow(image,cmap="binary")
        title=label_dict[labels[idx]]
        if len(prediction)>0:
            title+="=>"+label_dict[prediction[idx]]
        ax.set_title(title,fontsize=10)
        idx+=1
    plt.show()
plot_images_labels_prediction(data_record,target_record,pred_record,0,10)

6.Build_LeNet_for_mnist.py

import torch.nn as nn
import torch.nn.functional as F
#建立神经网络
class LeNet(nn.Module):
    def __init__(self,channel,classes):
        super(LeNet, self).__init__()
        self.conv1=nn.Conv2d(channel,32,5,1)
        self.conv2=nn.Conv2d(32,64,5,1)
        self.fc1=nn.Linear(4*4*64,512)
        self.fc2=nn.Linear(512,classes)
    def forward(self,x):
        x=F.relu(self.conv1(x))
        x=F.max_pool2d(x,2,2)
        x = F.relu(self.conv2(x))
        x = F.max_pool2d(x, 2, 2)
        x = x.view(-1, 4*4*64)
        x = F.relu(self.fc1(x))
        x = self.fc2(x)
        return F.log_softmax(x, dim=1)

7.mnist_loader.py

from __future__ import print_function
import torch.utils.data as data
from PIL import Image
import os
import os.path
import errno
import numpy as np
import torch
import codecs

class MNIST(data.Dataset):
    urls = [#此出需更改为自己电脑中数据集的路径,数据集的路径能在电脑浏览器中打开
        'file:///E:/PyCharmWorkSpace/Image_Set/mnist_data/train-images-idx3-ubyte.gz',
        'file:///E:/PyCharmWorkSpace/Image_Set/mnist_data/train-labels-idx1-ubyte.gz',
        'file:///E:/PyCharmWorkSpace/Image_Set/mnist_data/t10k-images-idx3-ubyte.gz',
        'file:///E:/PyCharmWorkSpace/Image_Set/mnist_data/t10k-labels-idx1-ubyte.gz',
    ]
    raw_folder = 'raw'
    processed_folder = 'processed'
    training_file = 'training.pt'
    test_file = 'test.pt'

    def __init__(self, root, train=True, transform=None, target_transform=None, download=False):
        self.root = os.path.expanduser(root)
        self.transform = transform
        self.target_transform = target_transform
        self.train = train  # training set or test set

        if download:
            self.download()

        if not self._check_exists():
            raise RuntimeError('Dataset not found.' + ' You can use download=True to download it')

        if self.train:
            self.train_data, self.train_labels = torch.load(
                os.path.join(self.root, self.processed_folder, self.training_file))
        else:
            self.test_data, self.test_labels = torch.load(
                os.path.join(self.root, self.processed_folder, self.test_file))

    def __getitem__(self, index):
        
        if self.train:
            img, target = self.train_data[index], self.train_labels[index]
        else:
            img, target = self.test_data[index], self.test_labels[index]

        img = Image.fromarray(img.numpy(), mode='L')

        if self.transform is not None:
            img = self.transform(img)

        if self.target_transform is not None:
            target = self.target_transform(target)

        return img, target

    def __len__(self):
        if self.train:
            return len(self.train_data)
        else:
            return len(self.test_data)

    def _check_exists(self):
        return os.path.exists(os.path.join(self.root, self.processed_folder, self.training_file)) and \
            os.path.exists(os.path.join(self.root, self.processed_folder, self.test_file))

    def download(self):
        """Download the MNIST data if it doesn't exist in processed_folder already."""
        from six.moves import urllib
        import gzip

        if self._check_exists():
            return
        # download files
        try:
            os.makedirs(os.path.join(self.root, self.raw_folder))
            os.makedirs(os.path.join(self.root, self.processed_folder))
        except OSError as e:
            if e.errno == errno.EEXIST:
                pass
            else:
                raise

        for url in self.urls:
            print('Downloading ' + url)
            data = urllib.request.urlopen(url)
            filename = url.rpartition('/')[2]
            file_path = os.path.join(self.root, self.raw_folder, filename)
            with open(file_path, 'wb') as f:
                f.write(data.read())
            with open(file_path.replace('.gz', ''), 'wb') as out_f, \
                    gzip.GzipFile(file_path) as zip_f:
                out_f.write(zip_f.read())
            os.unlink(file_path)
        # process and save as torch files
        print('Processing...')

        training_set = (
            read_image_file(os.path.join(self.root, self.raw_folder, 'train-images-idx3-ubyte')),
            read_label_file(os.path.join(self.root, self.raw_folder, 'train-labels-idx1-ubyte'))
        )
        test_set = (
            read_image_file(os.path.join(self.root, self.raw_folder, 't10k-images-idx3-ubyte')),
            read_label_file(os.path.join(self.root, self.raw_folder, 't10k-labels-idx1-ubyte'))
        )
        with open(os.path.join(self.root, self.processed_folder, self.training_file), 'wb') as f:
            torch.save(training_set, f)
        with open(os.path.join(self.root, self.processed_folder, self.test_file), 'wb') as f:
            torch.save(test_set, f)

        print('Done!')

    def __repr__(self):
        fmt_str = 'Dataset ' + self.__class__.__name__ + '\n'
        fmt_str += '    Number of datapoints: {}\n'.format(self.__len__())
        tmp = 'train' if self.train is True else 'test'
        fmt_str += '    Split: {}\n'.format(tmp)
        fmt_str += '    Root Location: {}\n'.format(self.root)
        tmp = '    Transforms (if any): '
        fmt_str += '{0}{1}\n'.format(tmp, self.transform.__repr__().replace('\n', '\n' + ' ' * len(tmp)))
        tmp = '    Target Transforms (if any): '
        fmt_str += '{0}{1}'.format(tmp, self.target_transform.__repr__().replace('\n', '\n' + ' ' * len(tmp)))
        return fmt_str
    
def get_int(b):
    return int(codecs.encode(b, 'hex'), 16)


def read_label_file(path):
    with open(path, 'rb') as f:
        data = f.read()
        assert get_int(data[:4]) == 2049
        length = get_int(data[4:8])
        parsed = np.frombuffer(data, dtype=np.uint8, offset=8)
        return torch.from_numpy(parsed).view(length).long()


def read_image_file(path):
    with open(path, 'rb') as f:
        data = f.read()
        assert get_int(data[:4]) == 2051
        length = get_int(data[4:8])
        num_rows = get_int(data[8:12])
        num_cols = get_int(data[12:16])
        images = []
        parsed = np.frombuffer(data, dtype=np.uint8, offset=16)
        return torch.from_numpy(parsed).view(length, num_rows, num_cols)

结果展示

基于PyTorch的mnist数据集的分类
准确率变化图效果
基于PyTorch的mnist数据集的分类
测试数据集准确率及预测结果图
基于PyTorch的mnist数据集的分类

本文地址:https://blog.csdn.net/pengshunbetter/article/details/107109420