欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

opencv3/C++ FLANN特征匹配

程序员文章站 2022-06-11 12:16:18
...

使用函数detectAndCompute()检测关键点并计算描述符
函数detectAndCompute()参数说明:

void detectAndCompute( 
InputArray image, //图像
InputArray mask, //掩模
CV_OUT std::vector<KeyPoint>& keypoints,//输出关键点的集合
OutputArray descriptors,//计算描述符(descriptors[i]是为keypoints[i]的计算描述符)
bool useProvidedKeypoints=false //使用提供的关键点
);

match()从查询集中查找每个描述符的最佳匹配。
参数说明:

void match( 
InputArray queryDescriptors, //查询描述符集
InputArray trainDescriptors, //训练描述符集合
CV_OUT std::vector<DMatch>& matches, //匹配
InputArray mask=noArray() //指定输入查询和描述符的列表矩阵之间的允许匹配的掩码
) const;

FLANN特征匹配示例:

#include<opencv2/opencv.hpp>
#include<opencv2/xfeatures2d.hpp>
using namespace cv;
using namespace cv::xfeatures2d;

//FLANN对高维数据较快
int main()
{
    Mat src1,src2;
    src1 = imread("E:/image/image/card2.jpg");
    src2 = imread("E:/image/image/cards.jpg");
    if (src1.empty() || src2.empty())
    {
        printf("can ont load images....\n");
        return -1;
    }
    imshow("image1", src1);
    imshow("image2", src2);

    int minHessian = 400;
    //选择SURF特征
    Ptr<SURF>detector = SURF::create(minHessian);
    std::vector<KeyPoint>keypoints1;
    std::vector<KeyPoint>keypoints2;
    Mat descriptor1, descriptor2;
    //检测关键点并计算描述符
    detector->detectAndCompute(src1, Mat(), keypoints1, descriptor1);
    detector->detectAndCompute(src2, Mat(), keypoints2, descriptor2);

    //基于Flann的描述符匹配器
    FlannBasedMatcher matcher;
    std::vector<DMatch>matches;
    //从查询集中查找每个描述符的最佳匹配
    matcher.match(descriptor1, descriptor2, matches);
    double minDist = 1000;
    double maxDist = 0;
    for (int i = 0; i < descriptor1.rows; i++)
    {
        double dist = matches[i].distance;
        printf("%f \n", dist);
        if (dist > maxDist)
        {
            maxDist = dist;
        }
        if (dist < minDist)
        {
            minDist = dist;
        }

    }
    //DMatch类用于匹配关键点描述符的
    std::vector<DMatch>goodMatches;
    for (int i = 0; i < descriptor1.rows; i++)
    {
        double dist = matches[i].distance;
        if (dist < max(2.5*minDist, 0.02))
        {
            goodMatches.push_back(matches[i]);
        }
    }
    Mat matchesImg;
    drawMatches(src1, keypoints1, src2, keypoints2, goodMatches, matchesImg, Scalar::all(-1), Scalar::all(-1), std::vector<char>(), DrawMatchesFlags::NOT_DRAW_SINGLE_POINTS);
    imshow("output", matchesImg);

    waitKey();
    return 0;
}

opencv3/C++ FLANN特征匹配opencv3/C++ FLANN特征匹配opencv3/C++ FLANN特征匹配

相关标签: opencv