欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

ORB特征提取匹配opencv3代码实现

程序员文章站 2022-06-11 15:47:10
...
#include <iostream>
#include <opencv2/core/core.hpp>
#include <opencv2/features2d/features2d.hpp>
#include <opencv2/highgui/highgui.hpp>

using namespace std;
using namespace cv;

int main ( int argc, char** argv )
{

    //-- 读取图像
    Mat img_1 = imread ( "1.png", CV_LOAD_IMAGE_COLOR );
    Mat img_2 = imread ( "2.png", CV_LOAD_IMAGE_COLOR );

    //-- 初始化
    std::vector<KeyPoint> keypoints_1, keypoints_2;
    Mat descriptors_1, descriptors_2;
    Ptr<FeatureDetector> detector = ORB::create();
    Ptr<DescriptorExtractor> descriptor = ORB::create();
    // Ptr<FeatureDetector> detector = FeatureDetector::create(detector_name);
    // Ptr<DescriptorExtractor> descriptor = DescriptorExtractor::create(descriptor_name);
    Ptr<DescriptorMatcher> matcher  = DescriptorMatcher::create ( "BruteForce-Hamming" );

    //-- 第一步:检测 Oriented FAST 角点位置
    detector->detect ( img_1,keypoints_1 );
    detector->detect ( img_2,keypoints_2 );

    //-- 第二步:根据角点位置计算 BRIEF 描述子
    descriptor->compute ( img_1, keypoints_1, descriptors_1 );
    descriptor->compute ( img_2, keypoints_2, descriptors_2 );

    Mat outimg1;
    drawKeypoints( img_1, keypoints_1, outimg1, Scalar::all(-1), DrawMatchesFlags::DEFAULT );
    imshow("ORB特征点",outimg1);

    //-- 第三步:对两幅图像中的BRIEF描述子进行匹配,使用 Hamming 距离
    vector<DMatch> matches;
    //BFMatcher matcher ( NORM_HAMMING );
    matcher->match ( descriptors_1, descriptors_2, matches );

    //-- 第四步:匹配点对筛选
    double min_dist=10000, max_dist=0;

    //找出所有匹配之间的最小距离和最大距离, 即是最相似的和最不相似的两组点之间的距离
    for ( int i = 0; i < descriptors_1.rows; i++ )
    {
        double dist = matches[i].distance;
        if ( dist < min_dist ) min_dist = dist;
        if ( dist > max_dist ) max_dist = dist;
    }

    // 仅供娱乐的写法
    min_dist = min_element( matches.begin(), matches.end(), [](const DMatch& m1, const DMatch& m2) {return m1.distance<m2.distance;} )->distance;
    max_dist = max_element( matches.begin(), matches.end(), [](const DMatch& m1, const DMatch& m2) {return m1.distance<m2.distance;} )->distance;

    printf ( "-- Max dist : %f \n", max_dist );
    printf ( "-- Min dist : %f \n", min_dist );

    //当描述子之间的距离大于两倍的最小距离时,即认为匹配有误.但有时候最小距离会非常小,设置一个经验值30作为下限.
    std::vector< DMatch > good_matches;
    for ( int i = 0; i < descriptors_1.rows; i++ )
    {
        if ( matches[i].distance <= max ( 2*min_dist, 30.0 ) )
        {
            good_matches.push_back ( matches[i] );
        }
    }

    //-- 第五步:绘制匹配结果
    Mat img_match;
    Mat img_goodmatch;
    drawMatches ( img_1, keypoints_1, img_2, keypoints_2, matches, img_match );
    drawMatches ( img_1, keypoints_1, img_2, keypoints_2, good_matches, img_goodmatch );
    imshow ( "所有匹配点对", img_match );
    imshow ( "优化后匹配点对", img_goodmatch );
    waitKey(0);

    return 0;
}

1.png2.png如下:

ORB特征提取匹配opencv3代码实现

ORB特征提取匹配opencv3代码实现