欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

tensorflow学习笔记(北京大学) tf4_7.py 完全解析 正则化

程序员文章站 2022-03-06 22:21:36
...
#coding:utf-8
#0导入模块 ,生成模拟数据集
#tensorflow学习笔记(北京大学) tf4_7.py 完全解析  正则化
#QQ群:476842922(欢迎加群讨论学习)
#如有错误还望留言指正,谢谢
#正则化为去除模型的过拟合现象
import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt
BATCH_SIZE = 30 
seed = 2 
#基于seed产生随机数
rdm = np.random.RandomState(seed)
#随机数返回300行2列的矩阵,表示300组坐标点(x0,x1)作为输入数据集
X = rdm.randn(300,2)#300个点
#从X这个300行2列的矩阵中取出一行,判断如果两个坐标的平方和小于2,给Y赋值1,其余赋值0
#作为输入数据集的标签(正确答案)
Y_ = [int(x0*x0 + x1*x1 <2) for (x0,x1) in X]
#遍历Y中的每个元素,1赋值'red'其余赋值'blue',这样可视化显示时人可以直观区分
Y_c = [['red' if y else 'blue'] for y in Y_]
#对数据集X和标签Y进行shape整理,第一个元素为-1表示,随第二个参数计算得到,第二个元素表示多少列,把X整理为n行2列,把Y整理为n行1列
X = np.vstack(X).reshape(-1,2)
Y_ = np.vstack(Y_).reshape(-1,1)
print X#打印点
print Y_#打印0  1 
print Y_c#打印个点颜色
#用plt.scatter画出数据集X各行中第0列元素和第1列元素的点即各行的(x0,x1),用各行Y_c对应的值表示颜色(c是color的缩写) 
plt.scatter(X[:,0], X[:,1], c=np.squeeze(Y_c)) #绘图,X[:,0]第一列元素,X[:,1]第二列元素,颜色
plt.show()#显示


#定义神经网络的输入、参数和输出,定义前向传播过程 
def get_weight(shape, regularizer):#(shape,正则化权重)
	w = tf.Variable(tf.random_normal(shape), dtype=tf.float32)
	#把内容加到集合对应位置做加法
	tf.add_to_collection('losses', tf.contrib.layers.l2_regularizer(regularizer)(w))
	return w

def get_bias(shape):  
    b = tf.Variable(tf.constant(0.01, shape=shape))#偏执b 
    return b
	
x = tf.placeholder(tf.float32, shape=(None, 2))#站位
y_ = tf.placeholder(tf.float32, shape=(None, 1))#站位

w1 = get_weight([2,11], 0.01)	
b1 = get_bias([11])
y1 = tf.nn.relu(tf.matmul(x, w1)+b1)

w2 = get_weight([11,1], 0.01)
b2 = get_bias([1])
y = tf.matmul(y1, w2)+b2 


#定义损失函数
loss_mse = tf.reduce_mean(tf.square(y-y_))#均方误差
loss_total = loss_mse + tf.add_n(tf.get_collection('losses'))#加正则化W的损失


#定义反向传播方法:不含正则化
train_step = tf.train.AdamOptimizer(0.0001).minimize(loss_mse)

with tf.Session() as sess:
	init_op = tf.global_variables_initializer()#初始化
	sess.run(init_op)
	STEPS = 40000#训练40000次
	for i in range(STEPS):
		start = (i*BATCH_SIZE) % 300
		end = start + BATCH_SIZE
		sess.run(train_step, feed_dict={x:X[start:end], y_:Y_[start:end]})
		if i % 2000 == 0:#每2000轮打印loss值
			loss_mse_v = sess.run(loss_mse, feed_dict={x:X, y_:Y_})
			print("After %d steps, loss is: %f" %(i, loss_mse_v))
    #xx在-3到3之间以步长为0.01,yy在-3到3之间以步长0.01,生成二维网格坐标点
	xx, yy = np.mgrid[-3:3:.01, -3:3:.01]#打点
	#将xx , yy拉直,并合并成一个2列的矩阵,得到一个网格坐标点的集合
	grid = np.c_[xx.ravel(), yy.ravel()]#xx.ravel()把xx拉直  np.c_:对应位置配对,组成矩阵
	#将网格坐标点喂入神经网络 ,probs为输出
	probs = sess.run(y, feed_dict={x:grid})
	#probs的shape调整成xx的样子
	probs = probs.reshape(xx.shape)#改变形状
	print "w1:\n",sess.run(w1)
	print "b1:\n",sess.run(b1)
	print "w2:\n",sess.run(w2)	
	print "b2:\n",sess.run(b2)

plt.scatter(X[:,0], X[:,1], c=np.squeeze(Y_c))#绘画点(x坐标,y坐标,颜色)
plt.contour(xx, yy, probs, levels=[.5])#绘制等高线(x轴坐标,y轴坐标,改点高度,等高线高度)
plt.show()#显示



#定义反向传播方法:包含正则化
train_step = tf.train.AdamOptimizer(0.0001).minimize(loss_total)

with tf.Session() as sess:
	init_op = tf.global_variables_initializer()#初始化
	sess.run(init_op)
	STEPS = 40000#4000轮
	for i in range(STEPS):
		start = (i*BATCH_SIZE) % 300
		end = start + BATCH_SIZE
		sess.run(train_step, feed_dict={x: X[start:end], y_:Y_[start:end]})
		if i % 2000 == 0:
			loss_v = sess.run(loss_total, feed_dict={x:X,y_:Y_})
			print("After %d steps, loss is: %f" %(i, loss_v))

	xx, yy = np.mgrid[-3:3:.01, -3:3:.01]
	grid = np.c_[xx.ravel(), yy.ravel()]
	probs = sess.run(y, feed_dict={x:grid})
	probs = probs.reshape(xx.shape)
	print "w1:\n",sess.run(w1)
	print "b1:\n",sess.run(b1)
	print "w2:\n",sess.run(w2)
	print "b2:\n",sess.run(b2)

plt.scatter(X[:,0], X[:,1], c=np.squeeze(Y_c)) 
plt.contour(xx, yy, probs, levels=[.5])
plt.show()