tensorflow学习笔记(北京大学) tf4_8_generateds.py 完全解析
程序员文章站
2022-07-13 12:27:42
...
#coding:utf-8
#0导入模块 ,生成模拟数据集
#tensorflow学习笔记(北京大学) tf4_8_generateds.py 完全解析
#QQ群:476842922(欢迎加群讨论学习)
#如有错误还望留言指正,谢谢
import numpy as np
import matplotlib.pyplot as plt
seed = 2
def generateds():
#基于seed产生随机数
rdm = np.random.RandomState(seed)
#随机数返回300行2列的矩阵,表示300组坐标点(x0,x1)作为输入数据集
X = rdm.randn(300,2)
#从X这个300行2列的矩阵中取出一行,判断如果两个坐标的平方和小于2,给Y赋值1,其余赋值0
#作为输入数据集的标签(正确答案)
Y_ = [int(x0*x0 + x1*x1 <2) for (x0,x1) in X]
#遍历Y中的每个元素,1赋值'red'其余赋值'blue',这样可视化显示时人可以直观区分
Y_c = [['red' if y else 'blue'] for y in Y_]
#对数据集X和标签Y进行形状整理,第一个元素为-1表示跟随第二列计算,第二个元素表示多少列,可见X为两列,Y为1列
X = np.vstack(X).reshape(-1,2)
Y_ = np.vstack(Y_).reshape(-1,1)
return X, Y_, Y_c
#print X
#print Y_
#print Y_c
#用plt.scatter画出数据集X各行中第0列元素和第1列元素的点即各行的(x0,x1),用各行Y_c对应的值表示颜色(c是color的缩写)
#plt.scatter(X[:,0], X[:,1], c=np.squeeze(Y_c))
#plt.show()
上一篇: 重要的代码片段
推荐阅读
-
tensorflow学习笔记(北京大学) tf4_8_forward.py 完全解析
-
tensorflow学习笔记(北京大学) tf4_8_generateds.py 完全解析
-
tensorflow学习笔记(北京大学) tf4_2.py 完全解析
-
tensorflow学习笔记(北京大学) tf4_6.py 完全解析 滑动平均
-
tensorflow学习笔记(北京大学) tf4_2.py 完全解析 酸奶学习模型
-
tensorflow学习笔记(北京大学) tf4_5.py 完全解析 设损失函数 loss=(w+1)^2
-
tensorflow学习笔记(北京大学) tf4_8_backward.py 完全解析
-
tensorflow学习笔记(4)------北京大学 曹健
-
tensorflow学习笔记(北京大学) tf4_4.py 完全解析
-
tensorflow学习笔记(1)------北京大学 曹健