欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

tensorflow学习笔记(北京大学) tf4_8_backward.py 完全解析

程序员文章站 2022-07-13 12:27:12
...
#coding:utf-8
#tensorflow学习笔记(北京大学) tf4_8_backward.py 完全解析  
#QQ群:476842922(欢迎加群讨论学习)
#如有错误还望留言指正,谢谢
#0导入模块 ,生成模拟数据集
import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt
import opt4_8_generateds
import opt4_8_forward

STEPS = 40000
BATCH_SIZE = 30 
LEARNING_RATE_BASE = 0.001
LEARNING_RATE_DECAY = 0.999
REGULARIZER = 0.01#正则化

def backward():#反向传播
	x = tf.placeholder(tf.float32, shape=(None, 2))#占位
	y_ = tf.placeholder(tf.float32, shape=(None, 1))#占位
	#X:300行2列的矩阵。Y_:坐标的平方和小于2,给Y赋值1,其余赋值0
	X, Y_, Y_c = opt4_8_generateds.generateds()
	#前向传播
	y = opt4_8_forward.forward(x, REGULARIZER)
	
	global_step = tf.Variable(0,trainable=False)	
	#指数衰减学习率
	learning_rate = tf.train.exponential_decay(
		LEARNING_RATE_BASE,#学习率
		global_step,#计数
		300/BATCH_SIZE,
		LEARNING_RATE_DECAY,#学习衰减lü
		staircase=True)#选择不同的衰减方式


	#定义损失函数
	loss_mse = tf.reduce_mean(tf.square(y-y_))#均方误差
	loss_total = loss_mse + tf.add_n(tf.get_collection('losses'))#正则化
	
	#定义反向传播方法:包含正则化
	train_step = tf.train.AdamOptimizer(learning_rate).minimize(loss_total)

	with tf.Session() as sess:
		init_op = tf.global_variables_initializer()#初始化
		sess.run(init_op)
		for i in range(STEPS):
			start = (i*BATCH_SIZE) % 300
			end = start + BATCH_SIZE#3000轮
			sess.run(train_step, feed_dict={x: X[start:end], y_:Y_[start:end]})
			if i % 2000 == 0:
				loss_v = sess.run(loss_total, feed_dict={x:X,y_:Y_})
				print("After %d steps, loss is: %f" %(i, loss_v))

		xx, yy = np.mgrid[-3:3:.01, -3:3:.01]
		grid = np.c_[xx.ravel(), yy.ravel()]
		probs = sess.run(y, feed_dict={x:grid})
		probs = probs.reshape(xx.shape)
	
	plt.scatter(X[:,0], X[:,1], c=np.squeeze(Y_c)) #画点
	plt.contour(xx, yy, probs, levels=[.5])#画线
	plt.show()#显示图像
	
if __name__=='__main__':
	backward()