欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页  >  IT编程

python实现烟花小程序

程序员文章站 2022-05-04 19:07:00
本文实例为大家分享了python实现烟花小程序的具体代码,供大家参考,具体内容如下 ''' fireworks simulation with tkinter...

本文实例为大家分享了python实现烟花小程序的具体代码,供大家参考,具体内容如下

'''
fireworks simulation with tkinter
*self-containing code
*to run: simply type python simple.py in your console
*compatible with both python 2 and python 3
*dependencies: tkinter, pillow (only for background image)
*the design is based on high school physics, with some small twists only for aesthetics purpose
 
import tkinter as tk
#from tkinter import messagebox
#from tkinter import photoimage
from pil import image, imagetk
from time import time, sleep
from random import choice, uniform, randint
from math import sin, cos, radians
# gravity, act as our constant g, you can experiment by changing it
gravity = 0.05
# list of color, can choose randomly or use as a queue (fifo)
colors = ['red', 'blue', 'yellow', 'white', 'green', 'orange', 'purple', 'seagreen','indigo', 'cornflowerblue']
generic class for particles
particles are emitted almost randomly on the sky, forming a round of circle (a star) before falling and getting removed
from canvas
attributes:
  - id: identifier of a particular particle in a star
  - x, y: x,y-coordinate of a star (point of explosion)
  - vx, vy: speed of particle in x, y coordinate
  - total: total number of particle in a star
  - age: how long has the particle last on canvas
  - color: self-explantory
  - cv: canvas
  - lifespan: how long a particle will last on canvas
class part:
  def __init__(self, cv, idx, total, explosion_speed, x=0., y=0., vx = 0., vy = 0., size=2., color = 'red', lifespan = 2, **kwargs):
    self.id = idx
    self.x = x
    self.y = y
    self.initial_speed = explosion_speed
    self.vx = vx
    self.vy = vy
    self.total = total
    self.age = 0
    self.color = color
    self.cv = cv
    self.cid = self.cv.create_oval(
      x - size, y - size, x + size,
      y + size, fill=self.color)
    self.lifespan = lifespan
  def update(self, dt):
    self.age += dt
    # particle expansions
    if self.alive() and self.expand():
      move_x = cos(radians(self.id*360/self.total))*self.initial_speed
      move_y = sin(radians(self.id*360/self.total))*self.initial_speed
      self.cv.move(self.cid, move_x, move_y)
      self.vx = move_x/(float(dt)*1000)
    # falling down in projectile motion
    elif self.alive():
      move_x = cos(radians(self.id*360/self.total))
      # we technically don't need to update x, y because move will do the job
      self.cv.move(self.cid, self.vx + move_x, self.vy+gravity*dt)
      self.vy += gravity*dt
    # remove article if it is over the lifespan
    elif self.cid is not none:
      cv.delete(self.cid)
      self.cid = none
  # define time frame for expansion
  def expand (self):
    return self.age <= 1.2
  # check if particle is still alive in lifespan
  def alive(self):
    return self.age <= self.lifespan
firework simulation loop:
recursively call to repeatedly emit new fireworks on canvas
a list of list (list of stars, each of which is a list of particles)
is created and drawn on canvas at every call, 
via update protocol inside each 'part' object 
def simulate(cv):
  t = time()
  explode_points = []
  wait_time = randint(10,100)
  numb_explode = randint(6,10)
  # create list of list of all particles in all simultaneous explosion
  for point in range(numb_explode):
    objects = []
    x_cordi = randint(50,550)
    y_cordi = randint(50, 150)
    speed = uniform (0.5, 1.5)     
    size = uniform (0.5,3)
    color = choice(colors)
    explosion_speed = uniform(0.2, 1)
    total_particles = randint(10,50)
    for i in range(1,total_particles):
      r = part(cv, idx = i, total = total_particles, explosion_speed = explosion_speed, x = x_cordi, y = y_cordi, 
        vx = speed, vy = speed, color=color, size = size, lifespan = uniform(0.6,1.75))
      objects.append(r)
    explode_points.append(objects)
  total_time = .0
  # keeps undate within a timeframe of 1.8 second
  while total_time < 1.8:
    sleep(0.01)
    tnew = time()
    t, dt = tnew, tnew - t
    for point in explode_points:
      for item in point:
        item.update(dt)
    cv.update()
    total_time += dt
  # recursive call to continue adding new explosion on canvas
  root.after(wait_time, simulate, cv)
def close(*ignore):
  """stops simulation loop and closes the window."""
  global root
  root.quit()
  
if __name__ == '__main__':
  root = tk.tk()
  cv = tk.canvas(root, height=600, width=600)
  # use a nice background image
  image = image.open("./image1.jpg")#背景照片路径自行选择,可以选择酷炫一点的,看起来效果会#更好
  photo = imagetk.photoimage(image)
  cv.create_image(0, 0, image=photo, anchor='nw')
  cv.pack()
  root.protocol("wm_delete_window", close)
  root.after(100, simulate, cv)
  root.mainloop()

注意:这里需要安装tkinter,安装过程:

step1:

>>> import _tkinter # with underscore, and lowercase 't'

step2:

>>> import tkinter # no underscore, uppercase 't' for versions prior to v3.0

>>> import tkinter # no underscore, lowercase 't' for v3.0 and later

step3:

>>> tkinter._test() # note underscore in _test and uppercase 't' for versions prior to v3.0 

>>> tkinter._test() # note underscore in _test and lowercase 't' for v3.0 and later

然后就可以运行了,在代码中有一个背景照片部分,路径可自行选择!我这里就不修改了。

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。