python实现烟花小程序
程序员文章站
2022-05-04 19:07:00
本文实例为大家分享了python实现烟花小程序的具体代码,供大家参考,具体内容如下
'''
fireworks simulation with tkinter...
本文实例为大家分享了python实现烟花小程序的具体代码,供大家参考,具体内容如下
''' fireworks simulation with tkinter *self-containing code *to run: simply type python simple.py in your console *compatible with both python 2 and python 3 *dependencies: tkinter, pillow (only for background image) *the design is based on high school physics, with some small twists only for aesthetics purpose import tkinter as tk #from tkinter import messagebox #from tkinter import photoimage from pil import image, imagetk from time import time, sleep from random import choice, uniform, randint from math import sin, cos, radians # gravity, act as our constant g, you can experiment by changing it gravity = 0.05 # list of color, can choose randomly or use as a queue (fifo) colors = ['red', 'blue', 'yellow', 'white', 'green', 'orange', 'purple', 'seagreen','indigo', 'cornflowerblue'] generic class for particles particles are emitted almost randomly on the sky, forming a round of circle (a star) before falling and getting removed from canvas attributes: - id: identifier of a particular particle in a star - x, y: x,y-coordinate of a star (point of explosion) - vx, vy: speed of particle in x, y coordinate - total: total number of particle in a star - age: how long has the particle last on canvas - color: self-explantory - cv: canvas - lifespan: how long a particle will last on canvas class part: def __init__(self, cv, idx, total, explosion_speed, x=0., y=0., vx = 0., vy = 0., size=2., color = 'red', lifespan = 2, **kwargs): self.id = idx self.x = x self.y = y self.initial_speed = explosion_speed self.vx = vx self.vy = vy self.total = total self.age = 0 self.color = color self.cv = cv self.cid = self.cv.create_oval( x - size, y - size, x + size, y + size, fill=self.color) self.lifespan = lifespan def update(self, dt): self.age += dt # particle expansions if self.alive() and self.expand(): move_x = cos(radians(self.id*360/self.total))*self.initial_speed move_y = sin(radians(self.id*360/self.total))*self.initial_speed self.cv.move(self.cid, move_x, move_y) self.vx = move_x/(float(dt)*1000) # falling down in projectile motion elif self.alive(): move_x = cos(radians(self.id*360/self.total)) # we technically don't need to update x, y because move will do the job self.cv.move(self.cid, self.vx + move_x, self.vy+gravity*dt) self.vy += gravity*dt # remove article if it is over the lifespan elif self.cid is not none: cv.delete(self.cid) self.cid = none # define time frame for expansion def expand (self): return self.age <= 1.2 # check if particle is still alive in lifespan def alive(self): return self.age <= self.lifespan firework simulation loop: recursively call to repeatedly emit new fireworks on canvas a list of list (list of stars, each of which is a list of particles) is created and drawn on canvas at every call, via update protocol inside each 'part' object def simulate(cv): t = time() explode_points = [] wait_time = randint(10,100) numb_explode = randint(6,10) # create list of list of all particles in all simultaneous explosion for point in range(numb_explode): objects = [] x_cordi = randint(50,550) y_cordi = randint(50, 150) speed = uniform (0.5, 1.5) size = uniform (0.5,3) color = choice(colors) explosion_speed = uniform(0.2, 1) total_particles = randint(10,50) for i in range(1,total_particles): r = part(cv, idx = i, total = total_particles, explosion_speed = explosion_speed, x = x_cordi, y = y_cordi, vx = speed, vy = speed, color=color, size = size, lifespan = uniform(0.6,1.75)) objects.append(r) explode_points.append(objects) total_time = .0 # keeps undate within a timeframe of 1.8 second while total_time < 1.8: sleep(0.01) tnew = time() t, dt = tnew, tnew - t for point in explode_points: for item in point: item.update(dt) cv.update() total_time += dt # recursive call to continue adding new explosion on canvas root.after(wait_time, simulate, cv) def close(*ignore): """stops simulation loop and closes the window.""" global root root.quit() if __name__ == '__main__': root = tk.tk() cv = tk.canvas(root, height=600, width=600) # use a nice background image image = image.open("./image1.jpg")#背景照片路径自行选择,可以选择酷炫一点的,看起来效果会#更好 photo = imagetk.photoimage(image) cv.create_image(0, 0, image=photo, anchor='nw') cv.pack() root.protocol("wm_delete_window", close) root.after(100, simulate, cv) root.mainloop()
注意:这里需要安装tkinter,安装过程:
step1:
>>> import _tkinter # with underscore, and lowercase 't'
step2:
>>> import tkinter # no underscore, uppercase 't' for versions prior to v3.0
>>> import tkinter # no underscore, lowercase 't' for v3.0 and later
step3:
>>> tkinter._test() # note underscore in _test and uppercase 't' for versions prior to v3.0
>>> tkinter._test() # note underscore in _test and lowercase 't' for v3.0 and later
然后就可以运行了,在代码中有一个背景照片部分,路径可自行选择!我这里就不修改了。
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。