欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

3阶(次)贝塞尔曲线的JavaScript(JS)实现

程序员文章站 2022-04-17 19:51:46
...
数学符号的显示太差了,推荐看这里

贝塞尔曲线简介:
贝塞尔曲线,是贝塞尔老爷子在使用电子计算机设计汽车零件的时候 进行曲面设计而采用的一种参数化的样条曲线.

一般参数方程:


B(t) = \sum_{i=0}^nC_n^iP_i(1-t)^{n-i}t^i

由公式很容易可以看出n阶贝塞尔曲线需要的点数是n+1个点,该公式为参数方程,并不是一般意义上的y=f(x),而是y = f(t),x = f(t).

贝塞尔曲线就是用来画曲线的,以三阶贝塞尔曲线为例,他有四个控制点,第一个点和最后一个点是这条曲线的起始点和终止点,曲线必定会经过这两个点,而第二个和第三个则是控制曲线形状的,更直接来说通过改变第二个点和第三个 点的位置,曲线的斜率就会受到影响。具体的影响可以直接打开chrome调试面板任意设置一个transition属性 然后观察其timing-function 看到效果。

上边说到了斜率,那其实在一个位移-时间的曲线方程中,斜率则代表了速度,实际在web动画中位移可以换成任何一个属性(详见早年间关于动画的一些论断)

那其实用js实现一条三阶贝塞尔曲线,无外呼是找一个 时间x -> 其他任意属性y 之间的映射。

这里,x我们是已知的,现在的需求就是解出y,以CSS的transition-timing-function做为一个参考,我们可以把起始点和终止点的坐标设置成(0,0)和(1,1) (实际很多东西都会这么处理,最后的结果做一个线性映射就好),自然两个控制点的范围也应该在0-1之间。

先将贝塞尔曲线展开成一般形式:


B(t) = P_0(1-t)^3 + 3P_1t(1-t)^2 + 3P2t^2(1-t) + P3t^3

起始、终止点带入简化:


B(t) = 3P_1t(1-t)^2 + 3P_2t^2(1-t) + t^3

OK,理论完成可以实践了。

假定,我们得到某一时刻的时刻值 x , 那么通过参数方程B(t) = x , 可求得参数t的值,再将该t带入 y = B (t),中即可求得我们想要的最终结果y。

所以,归根结底,第一件事情是要解方程,多次函数的求根并不容易,这里具体实现的时候,我们可以参考chromium的贝塞尔曲线实现,来解决这个问题,具体的做法是,首先通过8次牛顿迭代,如果找到了就直接return结果,如果没有,就开始Bisection_method(应该叫对分法)

牛顿迭代的原理,简而言之就是在一条曲线上任选一点做切线,然后在该切线与x轴的交点上做一条垂直于x轴的直线,假设该直线与曲线相交于另一个点,再在该点做切线。。。 一直重复此过程,切线于x轴的交点会越来越与曲线的根接近。

基本推导:
假设有曲线y = f(x) 该曲线上任取一点x_0,y_0,做该点切线,
则,该点处切线的斜率为f^{(1)}(x_0)
由曲线方程 y = kx + b 代入以上参数得
b = f(x_0) - f^{(1)}(x_0)x_0
故 切线方程为 g(x) = f(x_0) - f^{(1)}(x_0)(x_0-x);
得到该切线与x轴得交点为x_1 = x_0 - \frac{f(x_0)}{f^{(1)}(x_0)}
这便是一次迭代。x1便是我们得到第一个近似根,在往后得迭代中,假如这个近似跟与实际根的误差在一个我们可接受的范围内,便可以将这个根当作真根。

Bisection_method的基本推导则是假如连续函数y = f(x) 在区间[a,b]上连续,且f(a)f(b)符号相反,那么函数y在区间[a,b]上至少有一个根。然后二分这个区间进行求值。

代码:

  1. type coordinate = {
  2. x: number,
  3. y: number
  4. }
  5. export class cubicBezier{
  6. p1: coordinate
  7. p2: coordinate
  8. precision = 1e-5;
  9. constructor(x1,y1,x2,y2){
  10. this.p1 = {
  11. x:x1,
  12. y:y1
  13. };
  14. this.p2 = {
  15. x:x2,
  16. y:y2
  17. };
  18. }
  19. getX(t:number){
  20. let x1 = this.p1.x,x2=this.p2.x;
  21. return 3*x1*t*Math.pow(1-t,2) + 3* x2*Math.pow(t,2) * (1-t) + Math.pow(t,3)
  22. }
  23. getY(t:number){
  24. let y1 = this.p1.y,y2=this.p2.y;
  25. return 3*y1*t*Math.pow(1-t,2) + 3*y2*Math.pow(t,2) * (1-t) + Math.pow(t,3)
  26. }
  27. // https://github.com/amfe/amfe-cubicbezier/blob/master/src/index.js
  28. solveCurveX(x:number){
  29. var t2 = x;
  30. var derivative;
  31. var x2;
  32. var p1x = this.p1.x, p2x = this.p2.x;
  33. var ax = 3 * p1x - 3 * p2x + 1;
  34. var bx = 3 * p2x - 6 * p1x;;
  35. var cx = 3 * p1x;;
  36. function sampleCurveDerivativeX(t:number){
  37. // `ax t^3 + bx t^2 + cx t' expanded using Horner 's rule.
  38. return (3 * ax * t + 2 * bx) * t + cx;
  39. }
  40. // https://trac.webkit.org/browser/trunk/Source/WebCore/platform/animation
  41. // First try a few iterations of Newton's method -- normally very fast.
  42. // http://en.wikipedia.org/wiki/Newton's_method
  43. for (let i = 0; i < 8; i++) {
  44. // f(t)-x=0
  45. x2 = this.getX(t2) - x;
  46. if (Math.abs(x2) < this.precision) {
  47. return t2;
  48. }
  49. derivative = sampleCurveDerivativeX(t2);
  50. // == 0, failure
  51. if (Math.abs(derivative) < this.precision) {
  52. break;
  53. }
  54. // xn = x(n-1) - f(xn)/ f'(xn)
  55. // 假设g(x) = f(t) - x
  56. // g'(x) = f'(t)
  57. //所以 f'(t) == g'(t)
  58. // derivative == g'(t)
  59. t2 -= x2 / derivative;
  60. }
  61. // Fall back to the bisection method for reliability.
  62. // bisection
  63. // http://en.wikipedia.org/wiki/Bisection_method
  64. var t1 = 1;
  65. var t0 = 0;
  66. t2 = x;
  67. while (t1 > t0) {
  68. x2 = this.getX(t2) - x;
  69. if (Math.abs(x2) < this.precision) {
  70. return t2;
  71. }
  72. if (x2 > 0) {
  73. t1 = t2;
  74. } else {
  75. t0 = t2;
  76. }
  77. t2 = (t1 + t0) / 2;
  78. }
  79. // Failure
  80. return t2;
  81. }
  82. solve(x:number){
  83. return this.getY( this.solveCurveX(x) )
  84. }
  85. }