欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页  >  后端开发

Pytorch入门之mnist分类实例

程序员文章站 2022-03-31 12:31:43
...
这篇文章主要为大家详细介绍了Pytorch入门之mnist分类实例,具有一定的参考价值,感兴趣的小伙伴们可以参考一下

本文实例为大家分享了Pytorch入门之mnist分类的具体代码,供大家参考,具体内容如下

#!/usr/bin/env python
# -*- coding: utf-8 -*-
__author__ = 'denny'
__time__ = '2017-9-9 9:03'

import torch
import torchvision
from torch.autograd import Variable
import torch.utils.data.dataloader as Data

train_data = torchvision.datasets.MNIST(
 './mnist', train=True, transform=torchvision.transforms.ToTensor(), download=True
)
test_data = torchvision.datasets.MNIST(
 './mnist', train=False, transform=torchvision.transforms.ToTensor()
)
print("train_data:", train_data.train_data.size())
print("train_labels:", train_data.train_labels.size())
print("test_data:", test_data.test_data.size())

train_loader = Data.DataLoader(dataset=train_data, batch_size=64, shuffle=True)
test_loader = Data.DataLoader(dataset=test_data, batch_size=64)


class Net(torch.nn.Module):
 def __init__(self):
 super(Net, self).__init__()
 self.conv1 = torch.nn.Sequential(
  torch.nn.Conv2d(1, 32, 3, 1, 1),
  torch.nn.ReLU(),
  torch.nn.MaxPool2d(2))
 self.conv2 = torch.nn.Sequential(
  torch.nn.Conv2d(32, 64, 3, 1, 1),
  torch.nn.ReLU(),
  torch.nn.MaxPool2d(2)
 )
 self.conv3 = torch.nn.Sequential(
  torch.nn.Conv2d(64, 64, 3, 1, 1),
  torch.nn.ReLU(),
  torch.nn.MaxPool2d(2)
 )
 self.dense = torch.nn.Sequential(
  torch.nn.Linear(64 * 3 * 3, 128),
  torch.nn.ReLU(),
  torch.nn.Linear(128, 10)
 )

 def forward(self, x):
 conv1_out = self.conv1(x)
 conv2_out = self.conv2(conv1_out)
 conv3_out = self.conv3(conv2_out)
 res = conv3_out.view(conv3_out.size(0), -1)
 out = self.dense(res)
 return out


model = Net()
print(model)

optimizer = torch.optim.Adam(model.parameters())
loss_func = torch.nn.CrossEntropyLoss()

for epoch in range(10):
 print('epoch {}'.format(epoch + 1))
 # training-----------------------------
 train_loss = 0.
 train_acc = 0.
 for batch_x, batch_y in train_loader:
 batch_x, batch_y = Variable(batch_x), Variable(batch_y)
 out = model(batch_x)
 loss = loss_func(out, batch_y)
 train_loss += loss.data[0]
 pred = torch.max(out, 1)[1]
 train_correct = (pred == batch_y).sum()
 train_acc += train_correct.data[0]
 optimizer.zero_grad()
 loss.backward()
 optimizer.step()
 print('Train Loss: {:.6f}, Acc: {:.6f}'.format(train_loss / (len(
 train_data)), train_acc / (len(train_data))))

 # evaluation--------------------------------
 model.eval()
 eval_loss = 0.
 eval_acc = 0.
 for batch_x, batch_y in test_loader:
 batch_x, batch_y = Variable(batch_x, volatile=True), Variable(batch_y, volatile=True)
 out = model(batch_x)
 loss = loss_func(out, batch_y)
 eval_loss += loss.data[0]
 pred = torch.max(out, 1)[1]
 num_correct = (pred == batch_y).sum()
 eval_acc += num_correct.data[0]
 print('Test Loss: {:.6f}, Acc: {:.6f}'.format(eval_loss / (len(
 test_data)), eval_acc / (len(test_data))))

相关推荐:

python如何读取二进制mnist实例详解

一篇不错的Python入门教程_python

以上就是Pytorch入门之mnist分类实例的详细内容,更多请关注其它相关文章!