PyTorch CNN实战之MNIST手写数字识别示例
简介
卷积神经网络(convolutional neural network, cnn)是深度学习技术中极具代表的网络结构之一,在图像处理领域取得了很大的成功,在国际标准的imagenet数据集上,许多成功的模型都是基于cnn的。
卷积神经网络cnn的结构一般包含这几个层:
- 输入层:用于数据的输入
- 卷积层:使用卷积核进行特征提取和特征映射
- 激励层:由于卷积也是一种线性运算,因此需要增加非线性映射
- 池化层:进行下采样,对特征图稀疏处理,减少数据运算量。
- 全连接层:通常在cnn的尾部进行重新拟合,减少特征信息的损失
- 输出层:用于输出结果
pytorch实战
本文选用上篇的数据集mnist手写数字识别实践cnn。
import torch import torch.nn as nn import torch.nn.functional as f import torch.optim as optim from torchvision import datasets, transforms from torch.autograd import variable # training settings batch_size = 64 # mnist dataset train_dataset = datasets.mnist(root='./data/', train=true, transform=transforms.totensor(), download=true) test_dataset = datasets.mnist(root='./data/', train=false, transform=transforms.totensor()) # data loader (input pipeline) train_loader = torch.utils.data.dataloader(dataset=train_dataset, batch_size=batch_size, shuffle=true) test_loader = torch.utils.data.dataloader(dataset=test_dataset, batch_size=batch_size, shuffle=false) class net(nn.module): def __init__(self): super(net, self).__init__() # 输入1通道,输出10通道,kernel 5*5 self.conv1 = nn.conv2d(1, 10, kernel_size=5) self.conv2 = nn.conv2d(10, 20, kernel_size=5) self.mp = nn.maxpool2d(2) # fully connect self.fc = nn.linear(320, 10) def forward(self, x): # in_size = 64 in_size = x.size(0) # one batch # x: 64*10*12*12 x = f.relu(self.mp(self.conv1(x))) # x: 64*20*4*4 x = f.relu(self.mp(self.conv2(x))) # x: 64*320 x = x.view(in_size, -1) # flatten the tensor # x: 64*10 x = self.fc(x) return f.log_softmax(x) model = net() optimizer = optim.sgd(model.parameters(), lr=0.01, momentum=0.5) def train(epoch): for batch_idx, (data, target) in enumerate(train_loader): data, target = variable(data), variable(target) optimizer.zero_grad() output = model(data) loss = f.nll_loss(output, target) loss.backward() optimizer.step() if batch_idx % 200 == 0: print('train epoch: {} [{}/{} ({:.0f}%)]\tloss: {:.6f}'.format( epoch, batch_idx * len(data), len(train_loader.dataset), 100. * batch_idx / len(train_loader), loss.data[0])) def test(): test_loss = 0 correct = 0 for data, target in test_loader: data, target = variable(data, volatile=true), variable(target) output = model(data) # sum up batch loss test_loss += f.nll_loss(output, target, size_average=false).data[0] # get the index of the max log-probability pred = output.data.max(1, keepdim=true)[1] correct += pred.eq(target.data.view_as(pred)).cpu().sum() test_loss /= len(test_loader.dataset) print('\ntest set: average loss: {:.4f}, accuracy: {}/{} ({:.0f}%)\n'.format( test_loss, correct, len(test_loader.dataset), 100. * correct / len(test_loader.dataset))) for epoch in range(1, 10): train(epoch) test()
输出结果:
train epoch: 1 [0/60000 (0%)] loss: 2.315724
train epoch: 1 [12800/60000 (21%)] loss: 1.931551
train epoch: 1 [25600/60000 (43%)] loss: 0.733935
train epoch: 1 [38400/60000 (64%)] loss: 0.165043
train epoch: 1 [51200/60000 (85%)] loss: 0.235188test set: average loss: 0.1935, accuracy: 9421/10000 (94%)
train epoch: 2 [0/60000 (0%)] loss: 0.333513
train epoch: 2 [12800/60000 (21%)] loss: 0.163156
train epoch: 2 [25600/60000 (43%)] loss: 0.213840
train epoch: 2 [38400/60000 (64%)] loss: 0.141114
train epoch: 2 [51200/60000 (85%)] loss: 0.128191test set: average loss: 0.1180, accuracy: 9645/10000 (96%)
train epoch: 3 [0/60000 (0%)] loss: 0.206469
train epoch: 3 [12800/60000 (21%)] loss: 0.234443
train epoch: 3 [25600/60000 (43%)] loss: 0.061048
train epoch: 3 [38400/60000 (64%)] loss: 0.192217
train epoch: 3 [51200/60000 (85%)] loss: 0.089190test set: average loss: 0.0938, accuracy: 9723/10000 (97%)
train epoch: 4 [0/60000 (0%)] loss: 0.086325
train epoch: 4 [12800/60000 (21%)] loss: 0.117741
train epoch: 4 [25600/60000 (43%)] loss: 0.188178
train epoch: 4 [38400/60000 (64%)] loss: 0.049807
train epoch: 4 [51200/60000 (85%)] loss: 0.174097test set: average loss: 0.0743, accuracy: 9767/10000 (98%)
train epoch: 5 [0/60000 (0%)] loss: 0.063171
train epoch: 5 [12800/60000 (21%)] loss: 0.061265
train epoch: 5 [25600/60000 (43%)] loss: 0.103549
train epoch: 5 [38400/60000 (64%)] loss: 0.019137
train epoch: 5 [51200/60000 (85%)] loss: 0.067103test set: average loss: 0.0720, accuracy: 9781/10000 (98%)
train epoch: 6 [0/60000 (0%)] loss: 0.069251
train epoch: 6 [12800/60000 (21%)] loss: 0.075502
train epoch: 6 [25600/60000 (43%)] loss: 0.052337
train epoch: 6 [38400/60000 (64%)] loss: 0.015375
train epoch: 6 [51200/60000 (85%)] loss: 0.028996test set: average loss: 0.0694, accuracy: 9783/10000 (98%)
train epoch: 7 [0/60000 (0%)] loss: 0.171613
train epoch: 7 [12800/60000 (21%)] loss: 0.078520
train epoch: 7 [25600/60000 (43%)] loss: 0.149186
train epoch: 7 [38400/60000 (64%)] loss: 0.026692
train epoch: 7 [51200/60000 (85%)] loss: 0.108824test set: average loss: 0.0672, accuracy: 9793/10000 (98%)
train epoch: 8 [0/60000 (0%)] loss: 0.029188
train epoch: 8 [12800/60000 (21%)] loss: 0.031202
train epoch: 8 [25600/60000 (43%)] loss: 0.194858
train epoch: 8 [38400/60000 (64%)] loss: 0.051497
train epoch: 8 [51200/60000 (85%)] loss: 0.024832test set: average loss: 0.0535, accuracy: 9837/10000 (98%)
train epoch: 9 [0/60000 (0%)] loss: 0.026706
train epoch: 9 [12800/60000 (21%)] loss: 0.057807
train epoch: 9 [25600/60000 (43%)] loss: 0.065225
train epoch: 9 [38400/60000 (64%)] loss: 0.037004
train epoch: 9 [51200/60000 (85%)] loss: 0.057822test set: average loss: 0.0538, accuracy: 9829/10000 (98%)
process finished with exit code 0
参考:https://github.com/hunkim/pytorchzerotoall
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。
下一篇: HTML5表格_动力节点Java学院整理