欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

简单几何(直线位置) POJ 1269 Intersecting Lines

程序员文章站 2022-03-30 08:51:26
...

 

题目传送门

题意:判断两条直线的位置关系,共线或平行或相交

分析:先判断平行还是共线,最后就是相交。平行用叉积判断向量,共线的话也用叉积判断点,相交求交点

 

/************************************************
* Author        :Running_Time
* Created Time  :2015/10/24 星期六 09:08:55
* File Name     :POJ_1269.cpp
 ************************************************/

#include <cstdio>
#include <algorithm>
#include <iostream>
#include <sstream>
#include <cstring>
#include <cmath>
#include <string>
#include <vector>
#include <queue>
#include <deque>
#include <stack>
#include <list>
#include <map>
#include <set>
#include <bitset>
#include <cstdlib>
#include <ctime>
using namespace std;

#define lson l, mid, rt << 1
#define rson mid + 1, r, rt << 1 | 1
typedef long long ll;
const int N = 1e5 + 10;
const int INF = 0x3f3f3f3f;
const int MOD = 1e9 + 7;
const double EPS = 1e-10;
struct Point    {       //点的定义
    double x, y;
    Point (double x=0, double y=0) : x (x), y (y) {}
};
typedef Point Vector;       //向量的定义
Point read_point(void)   {      //点的读入
    double x, y;
    scanf ("%lf%lf", &x, &y);
    return Point (x, y);
}
double polar_angle(Vector A)  {     //向量极角
    return atan2 (A.y, A.x);
}
double dot(Vector A, Vector B)  {       //向量点积
    return A.x * B.x + A.y * B.y;
}
double cross(Vector A, Vector B)    {       //向量叉积
    return A.x * B.y - A.y * B.x;
}
int dcmp(double x)  {       //三态函数,减少精度问题
    if (fabs (x) < EPS) return 0;
    else    return x < 0 ? -1 : 1;
}
Vector operator + (Vector A, Vector B)  {       //向量加法
    return Vector (A.x + B.x, A.y + B.y);
}
Vector operator - (Vector A, Vector B)  {       //向量减法
    return Vector (A.x - B.x, A.y - B.y);
}
Vector operator * (Vector A, double p)  {       //向量乘以标量
    return Vector (A.x * p, A.y * p);
}
Vector operator / (Vector A, double p)  {       //向量除以标量
    return Vector (A.x / p, A.y / p);
}
bool operator < (const Point &a, const Point &b)    {       //点的坐标排序
    return a.x < b.x || (a.x == b.x && a.y < b.y);
}
bool operator == (const Point &a, const Point &b)   {       //判断同一个点
    return dcmp (a.x - b.x) == 0 && dcmp (a.y - b.y) == 0;
}
double length(Vector A) {       //向量长度,点积
    return sqrt (dot (A, A));
}
double angle(Vector A, Vector B)    {       //向量转角,逆时针,点积
    return acos (dot (A, B) / length (A) / length (B));
}
double area_triangle(Point a, Point b, Point c) {       //三角形面积,叉积
    return fabs (cross (b - a, c - a)) / 2.0;
}
Vector rotate(Vector A, double rad) {       //向量旋转,逆时针
    return Vector (A.x * cos (rad) - A.y * sin (rad), A.x * sin (rad) + A.y * cos (rad));
}
Vector nomal(Vector A)  {       //向量的单位法向量
    double len = length (A);
    return Vector (-A.y / len, A.x / len);
}
Point point_inter(Point p, Vector V, Point q, Vector W)    {        //两直线交点,参数方程
    Vector U = p - q;
    double t = cross (W, U) / cross (V, W);
    return p + V * t;
}
double dis_to_line(Point p, Point a, Point b)   {       //点到直线的距离,两点式
    Vector V1 = b - a, V2 = p - a;
    return fabs (cross (V1, V2)) / length (V1);
}
double dis_to_seg(Point p, Point a, Point b)    {       //点到线段的距离,两点式
  
    if (a == b) return length (p - a);
    Vector V1 = b - a, V2 = p - a, V3 = p - b;
    if (dcmp (dot (V1, V2)) < 0)    return length (V2);
    else if (dcmp (dot (V1, V3)) > 0)   return length (V3);
    else    return fabs (cross (V1, V2)) / length (V1);
}
Point point_proj(Point p, Point a, Point b)   {     //点在直线上的投影,两点式
    Vector V = b - a;
    return a + V * (dot (V, p - a) / dot (V, V));
}
bool inter(Point a1, Point a2, Point b1, Point b2)  {       //判断线段相交,两点式
    double c1 = cross (a2 - a1, b1 - a1), c2 = cross (a2 - a1, b2 - a1),
           c3 = cross (b2 - b1, a1 - b1), c4 = cross (b2 - b1, a2 - b1);
    return dcmp (c1) * dcmp (c2) < 0 && dcmp (c3) * dcmp (c4) < 0;
}
bool on_seg(Point p, Point a1, Point a2)    {       //判断点在线段上,两点式
    return dcmp (cross (a1 - p, a2 - p)) == 0 && dcmp (dot (a1 - p, a2 - p)) < 0;
}
double area_poly(Point *p, int n)   {       //多边形面积
    double ret = 0;
    for (int i=1; i<n-1; ++i)   {
        ret += fabs (cross (p[i] - p[0], p[i+1] - p[0]));
    }
    return ret / 2;
}

int main(void)    {
    int T;  scanf ("%d", &T);
    Point a1, a2, b1, b2;
    puts ("INTERSECTING LINES OUTPUT");
    while (T--) {
        a1 = read_point ();
        a2 = read_point ();
        b1 = read_point ();
        b2 = read_point ();
        Vector A = a2 - a1, B = b2 - b1;
        if (cross (A, B) == 0)   {
            if (cross (b1 - a1, b2 - a1) == 0 && cross (b1 - a2, b2 - a2) == 0)  puts ("LINE");
            else    puts ("NONE");
        }
        else    {
            Point ans = point_inter (a1, a2 - a1, b1, b2 - b1);
            printf ("POINT %.2f %.2f\n", ans.x, ans.y);
        }
    }
    puts ("END OF OUTPUT");

    return 0;
}