欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页  >  web前端

javascript关于计算精度的一些小知识(总结)

程序员文章站 2022-03-25 10:44:52
...
本章给大家介绍关于javascript中计算精度的一些小知识(总结),让大家了解十进制之间二进制是如何转换的、javascript是如何保存数字的、 javascript是如何读取数字的,最后实例讲解 javascript如何解决精度问题出现的计算错误问题。有一定的参考价值,有需要的朋友可以参考一下,希望对你有所帮助。

一. 前置知识点

1. 十进制如何转为二进制?

整数部分除二取余数, 直到商为0,逆序排列,小数部分乘2取整,顺序排列,直到积中小数部分为0或者到达要求精度。

8转为二进制是多少?

8 / 2 = 4...0  取0
4 / 2 = 2...0  取0
2 / 2 = 1...0  取0
1 / 2 = 0...1  取1

二进制结果为:1000

0.25转为二进制是多少?

0.25 * 2 = 0.50  取0
0.50 * 2 = 1.00  取1

二进制结果为:01

于是可得出8.25的二进制表示:1000.01

2. 二进制如何转为十进制?

注意:二进制转为十进制不分整数部分与小数部分。

二进制1000.01转为十进制

1 * 2^3 + 0 * 2^2 + 0 * 2^1 + 0 * 2^0 + 0 * 2^-1 + 0 * 2^-2 = 8.25

二. javascript是如何保存数字的

JavaScript 里的数字是采用 IEEE 754 标准的 64 位 double 双精度浮点数

  • sign bit(符号): 用来表示正负号,1位 (0表示正,1表示负)

  • exponent(指数): 用来表示次方数,11位

  • mantissa(尾数): 用来表示精确度,52位

javascript关于计算精度的一些小知识(总结)

对于没有接触的人来说,以上可能理解起来很模糊,没关系,接下来我们用案例具体说明其流程,先看一下上述的十进制数8.25在JS中是如何保存的。

  • 十进制的8.25会被转化为二进制的1000.01;

  • 二进制1000.01可用二进制的科学计数法1.00001 * 2^4表示;

  • 00001 * 2^4的小数部分00001(二进制)就是mantissa(尾数)了,4(十进制)加上1023就是exponent(指数)了(这里后面讲解为什么要加上1023);

  • 接下来指数4要加上1023后转为二进制10000000011;

  • 我们的十进制8.25是一个正数,所以符号为二进制表示为0

  • 8.25最终的二进制保存0-10000000011-0000100000000000000000000000000000000000000000000000

注意:

  • 不够位的我们都用0补充;

  • 步骤2得出的科学计数中的整数本分1我们好像忘记,这里因为Javascript为了更最大限度的提高精确度,而省略了这个1, 这样在我们我们本来只能保存(二进制)52位的尾数,实际是有(二进制)53位的;

  • 指数部分是11位,表示的范围是[0, 2047],由于科学计数中的指数可正可负,所以,中间数为 1023,[0,1022] 表示为负,[1024,2047] 表示为正, 这也解释了为什么我们科学计数中的指数要加上1023进行存储了。

三. javascript是如何读取数字的

我们还是以8.25的二进制0-10000000011-0000100000000000000000000000000000000000000000000000来讲述

  1. 首先我们获取指数部分的二进制1000000001,转化为十进制为1027,1027减去1023就是我们实际的指数4了;

  2. 获取尾数部分0000100000000000000000000000000000000000000000000000实际是0.00001(后面的0就不写了),然后加上我们忽略的1,得出1.00001;

  3. 因为首位为0,所以我们的数为正数,得出二进制的科学计数为1.00001 * 2^4,接着再转为十进制数,就得到了我们的8.25;

四. 从0.1+0.2来看javascript精度问题

这里就要进入我们的正题了,看懂了前面的原理说明,这部分将会变得很好理解了。

要计算0.1+0.2,首先计算要先读取到这两个浮点数

0.1存储为64位二进制浮点数

没有忘记以上步骤吧

  1. 先将0.1转化为二进制的整数部分为0,小数部分为:0001100110011001100110011001100110011...咦,这里居然进入了无限循环,那怎么办呢?暂时先不管;

  2. 我们得到的无限循环的二进制数用科学计数表示为1.100110011001100110011001100110011... * 2^-4;

  3. 指数位即是-4 + 1023 = 1019,转化位11位二进制数01111111011;

  4. 尾数位是无限循环的,但是双精度浮点数规定尾数位52位,于是超出52位的将被略去,保留1001100110011001100110011001100110011001100110011010

  5. 最后得出0.1的64位二进制浮点数:0-01111111011-1001100110011001100110011001100110011001100110011010

同上,0.2存储为64位二进制浮点数:0-01111111100-1001100110011001100110011001100110011001100110011010

读取到两个浮点数的64为二进制后,再将其转化为可计算的二进制数

  1. 0.1转化为1.1001100110011001100110011001100110011001100110011010 * 2^(1019 - 1023)——0.00011001100110011001100110011001100110011001100110011010;

  2. 0.2转化为1.1001100110011001100110011001100110011001100110011010 * 2^(1020 - 1023)——0.0011001100110011001100110011001100110011001100110011010;

接着将两个浮点数的二进制数进行加法运算,得出0.0100110011001100110011001100110011001100110011001100111转化为十进制数即为0.30000000000000004

不难看出,精度缺失是在存储这一步就丢失了,后面的计算只是在不精准的值上进行的运算。

五. javascript如何解决精度问题出现的计算错误问题

对于小数或者整数的简单运算可如下解决:

function numAdd(num1, num2) { 
  let baseNum, baseNum1, baseNum2; 
  try { 
    baseNum1 = String(num1).split(".")[1].length; 
  } catch (e) { 
    baseNum1 = 0; 
  } 
  try { 
    baseNum2 = String(num2).split(".")[1].length; 
  } catch (e) { 
    baseNum2 = 0;
  } 
  baseNum = Math.pow(10, Math.max(baseNum1, baseNum2));
  return (num1 * baseNum + num2 * baseNum) / baseNum;
};

如:0.1 + 0.2 通过函数处理后,相当于 (0.1 * 10 + 0.2 * 10) / 10

但是如同我们前面所了解的,浮点数在存储的时候就已经丢失精度了,所以浮点数乘以一个基数仍然会存在精度缺失问题,比如2500.01 * 100 = 250001.00000000003, 所以我们可以在以上函数的结果之上使用toFixed(),保留需要的小数位数。

一些复杂的计算,可以引入一些库进行解决

以上就是javascript关于计算精度的一些小知识(总结)的详细内容,更多请关注其它相关文章!