欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

opencv计算机视觉学习笔记四

程序员文章站 2024-03-25 09:31:52
...

转载来自https://blog.csdn.net/retacn_yue/article/details/53608388
第五章 人脸检测和识别

1 haar级联的概念

2 获取haar级联数据

在opencv源码中data/haarcascades目录下存放了用于人脸检测的xml文件.用于检测静止图像,视频和摄像头中的人脸

用于人脸眼睛 鼻子和嘴的跟踪

haarcascade_profileface

haarcascade_smile

haarcascade_russian_plate_number

haarcascade_upperbody

haarcascade_righteye_2splits

3 使用opencv进行人脸检测

3.1 静态图像中的人脸检测

示例代码如下:

import cv2

filename=’../zz.jpg’

def detect(filename):
#用于人脸检测xml
face_cascade=cv2.CascadeClassifier(‘../cascades/haarcascade_frontalface_default.xml’)

#读入图像
img=cv2.imread(filename)
#更换颜色空间
gray=cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
faces=face_cascade.detectMultiScale(gray,
                                    1.3,#图像的压缩率
                                    5)#人脸矩形保留邻近数目的最小值
#在原始图像上绘制蓝色矩形
for (x,y,w,h) in faces:
    img=cv2.rectangle(img,(x,y),(x+w,y+h),(255,0,0),2)
cv2.namedWindow('Vikings Detected!!')
cv2.imshow("Vikings Detected!!",img)
cv2.imwrite('../vikings.jpg',img)
cv2.waitKey(0)

if name==’main‘:
detect(filename)

执行结果:老同桌的脸居然识别不出来

3.2 视频中的人脸检测

示例代码如下:

!/usr/bin/env python

-- coding: utf-8 --

@Time : 2016/12/3 13:36

@Author : Retacn

@Site : 视频中的人脸检测

@File : fact_detection_video.py

@Software: PyCharm

author = “retacn”
copyright = “property of mankind.”
license = “CN”
version = “0.0.1”
maintainer = “retacn”
email = “[email protected]
status = “Development”

import cv2

def detect():
# 加载haar级联文件
face_cascade = cv2.CascadeClassifier(‘../cascades/haarcascade_frontalface_default.xml’)
eye_cascade = cv2.CascadeClassifier(‘../cascades/haarcascade_eye.xml’)
camera = cv2.VideoCapture(0)

# 捕获视频帧
while (True):
    ret, frame = camera.read()
    # 转换颜色空间
    gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
    faces = face_cascade.detectMultiScale(gray, 1.3, 5)

    for (x, y, w, h) in faces:
        #绘制检测到的人脸矩形
        img = cv2.rectangle(frame, (x, y), (x + w, y + h), (255, 0, 0), 2)
       # roi_gray = gray[y:y + h, x:x + w]

        #检测眼睛
        # eyes = eye_cascade.detectMultiScale(roi_gray, 1.03, 5, 0, (40, 40))
        eyes = eye_cascade.detectMultiScale(img, 1.03, 5, 0, (40, 40))

        #绘制检测到的眼睛矩形
        for (ex, ey, ew, eh) in eyes:
            cv2.rectangle(img, (ex, ey), (ex + ew, ey + eh), (0, 255, 0), 2)
        #print(x,y,w,h,ex,ey,ew,eh)
    #显示图像
    cv2.imshow('Camers', frame)
    #按q键退出
    if cv2.waitKey(1) & 0xFF == ord('q'):
        break
camera.release()
cv2.destroyAllWindows()

if name == ‘main‘:
detect()

3.3 人脸视别

人脸数据库:

The yale facedatabase

http://version.ucsd.edu/content/yale-face-database

The AT&T

http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html

The extendedyale or yale b

http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html

A 生成人脸数据

生成图像角本

图像像是灰度格式的.pgm文件,形状为正方式,大小要一样

示例代码如下:

!/usr/bin/env python

-- coding: utf-8 --

@Time : 2016/12/3 15:14

@Author : Retacn

@Site : 生成人脸识别数据

@File : createData.py

@Software: PyCharm

author = “retacn”
copyright = “property of mankind.”
license = “CN”
version = “0.0.1”
maintainer = “retacn”
email = “[email protected]
status = “Development”

import cv2

def generate():
face_cascade = cv2.CascadeClassifier(‘../cascades/haarcascade_frontalface_default.xml’)
eye_cascade = cv2.CascadeClassifier(‘../cascades/haarcascade_eye.xml’)

camera = cv2.VideoCapture(0)
count = 0
while (True):
    ret, frame = camera.read()
    gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
    faces = face_cascade.detectMultiScale(gray, 1.3, 5)

    for (x, y, w, h) in faces:
        img = cv2.rectangle(frame, (x, y), (x + w, y + h), (255, 0, 0), 2)
        f = cv2.resize(gray[y:y + h, x:x + w], (200, 200))
        cv2.imwrite('../data/at/retacn/%s.pgm' % str(count), f)
        count += 1
    cv2.imshow("Camera", frame)
    if cv2.waitKey(33) & 0xFF == ord("q"):
        break
camera.release()
cv2.destroyAllWindows()

if name == ‘main‘:
generate()

B 人脸视别

C 准备训练数据

生成csv文件的方法,示例代码如下:

!/usr/bin/env python

-- coding: utf-8 --

@Time : 2016/12/3 15:14

@Author : Retacn

@Site : 生成人脸识别数据

@File : createData.py

@Software: PyCharm

author = “retacn”
copyright = “property of mankind.”
license = “CN”
version = “0.0.1”
maintainer = “retacn”
email = “[email protected]
status = “Development”

import cv2

def generate():
face_cascade = cv2.CascadeClassifier(‘../cascades/haarcascade_frontalface_default.xml’)
eye_cascade = cv2.CascadeClassifier(‘../cascades/haarcascade_eye.xml’)

camera = cv2.VideoCapture(0)
count = 0
while (True):
    ret, frame = camera.read()
    gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
    faces = face_cascade.detectMultiScale(gray, 1.3, 5)

    for (x, y, w, h) in faces:
        img = cv2.rectangle(frame, (x, y), (x + w, y + h), (255, 0, 0), 2)
        f = cv2.resize(gray[y:y + h, x:x + w], (200, 200))
        cv2.imwrite('../data/at/retacn/%s.pgm' % str(count), f)
        count += 1
    cv2.imshow("Camera", frame)
    if cv2.waitKey(33) & 0xFF == ord("q"):
        break
camera.release()
cv2.destroyAllWindows()

if name == ‘main‘:
generate()

D 加载数据并识别人脸

示例代码如下:

加载识别数据

def read_image(path, sz=None):
c = 0
x, y = [], []
for dirname, dirnames, filenames in os.walk(path):
for subdirname in dirnames:
subject_path = os.path.join(dirname, subdirname)
for filename in os.listdir(subject_path):
try:
if (filename == ‘.directory’):
continue
filepath = os.path.join(subject_path, filename)
img = cv2.imread(filepath, cv2.IMREAD_GRAYSCALE)
if (sz is not None):
im = cv2.resize(im, (200, 200))
x.append(np.asanyarray(im, dtype=np.uint8))
y.append(c)
except IOError as ioe:
print(ioe)
except:
print(‘Unexpected error:’, sys.exc_info()[0])
raise
c += 1
return [x, y]

E 基于eignfaces的人脸识别

示例代码如下:

!/usr/bin/env python

-- coding: utf-8 --

@Time : 2016/12/3 22:07

@Author : Retacn

@Site : TODO 需要重新编译opencv扩展包,人脸检测与识别

@File : face_detection.py

@Software: PyCharm

author = “retacn”
copyright = “property of mankind.”
license = “CN”
version = “0.0.1”
maintainer = “retacn”
email = “[email protected]
status = “Development”

import cv2
import numpy as np
import sys
import os.path

生成人脸识别数据

def generate():
face_cascade = cv2.CascadeClassifier(‘../data/cascades/haarcascade_frontalface_default.xml’)
eye_cascade = cv2.CascadeClassifier(‘../data/cascades/haarcascade_eye.xml’)

# 读取摄像头视频数据
camera = cv2.VideoCapture(0)
count = 0
while (True):
    ret, frame = camera.read()
    # 更换颜色空间
    gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
    faces = face_cascade.detectMultiScale(gray, 1.3, 5)

    for (x, y, w, h) in faces:
        img = cv2.rectangle(frame, (x, y), (x + w, y + h), (255, 0, 0), 2)
        f = cv2.resize(gray[y:y + h, x:x + w], (200, 200))
        cv2.imwrite('../data/at/retacn/%s.pgm' % str(count), f)
        count += 1
    cv2.imshow("Camera", frame)
    if cv2.waitKey(1000 / 12) & 0xFF == ord("q"):
        break
camera.release()
cv2.destroyAllWindows()

加载识别数据

def read_image(path, sz=(200, 200)):
c = 0
x, y = [], []
for dirname, dirnames, filenames in os.walk(path):
for subdirname in dirnames:
subject_path = os.path.join(dirname, subdirname)
for filename in os.listdir(subject_path):
try:
if (filename == ‘.directory’):
continue
filepath = os.path.join(subject_path, filename)
img = cv2.imread(filepath, cv2.IMREAD_GRAYSCALE)
if (sz is not None):
img = cv2.resize(img, (200, 200))
x.append(np.asarray(img, dtype=np.uint8))
y.append(c)
except IOError as ioe:
print(ioe)
except:
print(‘Unexpected error:’, sys.exc_info()[0])
raise
c += 1
return [x, y]

基于eigenfaces的人脸识别

def face_rec():
names = [‘Yue’, ‘Retacn’, ‘Three’]
# 需要输入样本数据的存放路径
if len(sys.argv) < 2:
print(‘USAGE: facerec_defo.py [/path/to/store/images/at]’)
sys.exit()
# 读入图像数组,第二个参数为样本图像的存放位置
[x, y] = read_image(sys.argv[1])
y = np.asarray(y, dtype=np.int32)
# [x, y] = read_image(‘D:/workspace_pycharm/opencv3_python/data/at’)

# 如果有三个参数,则将第三个参数设为输出目录
if len(sys.argv) == 3:
    out_dir = sys.argv[2]

# 创建人脸识别模型
# model = cv2.face.createEigenFaceRecognizer()
# 基于Fisherfaces的人脸识别
# model = cv2.face.createFisherFaceRecognizer()
# 基于lbph的人脸识别
model = cv2.face.createLBPHFaceRecognizer()
model.train(np.asarray(x), np.asarray(y))
camera = cv2.VideoCapture(0)
face_cascade = cv2.CascadeClassifier('../data/cascades/haarcascade_frontalface_default.xml')

while (True):
    read, img = camera.read()
    faces = face_cascade.detectMultiScale(img, 1.3, 5)
    for (x, y, w, h) in faces:
        img = cv2.rectangle(img, (x, y), (x + w, y + h), (255, 0, 0), 2)
        gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
        roi = gray[x:x + w, y:y + h]
        try:
            roi = cv2.resize(roi, (200, 200), interpolation=cv2.INTER_LINEAR)
            # roi = cv2.resize(gray, (200, 200), interpolation=cv2.INTER_LINEAR)

            # 置信度评分
            params = model.predict(roi)
            print(params)
            print('Lable:%s,Confidence:%02f' % (params[0], params[1]))
            cv2.putText(img, names[params[0]], (x, y - 20), cv2.FONT_HERSHEY_SIMPLEX, 1, 255, 2)
        except:
            continue
    cv2.imshow("camera", img)
    if cv2.waitKey(33) & 0xFF == ord('q'):
        break
cv2.destroyAllWindows()

if name == ‘main‘:
# generate()
# [X, y] = read_image(‘D:/workspace_pycharm/opencv3_python/data/at’)
face_rec()
# generate()

F 基于fisherfaces的人脸识别

基于Fisherfaces的人脸识别

#model=cv2.face.createFisherFaceRecognizer()

G 基于LBPH的人脸识别

基于lbph的人脸识别

model=cv2.face.createLBPHFaceRecognizer()

H 通过置信度评分来丢弃结果

Predict()