欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

opencv计算机视觉学习笔记七

程序员文章站 2024-03-25 08:13:46
...

第八章 目标跟踪

1检测目标的移动

基本的运动检测,示例代码如下:

import cv2
import numpy as np

捕获摄像头图像

camera = cv2.VideoCapture(0)
#
es = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (10, 10))
kernel = np.ones((5, 5), np.uint8)
background = None

while (True):
ret, frame = camera.read()
# 将第一帧设为图像的背景
if background is None:
# 转换颜色空间
background = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
# 高斯模糊
background = cv2.GaussianBlur(background, (21, 21), 0)
continue
# 转换颜色空间并作模糊处理
gray_frame = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
gray_frame = cv2.GaussianBlur(gray_frame, (21, 21), 0)

# 取得差分图
diff = cv2.absdiff(background, gray_frame)
diff = cv2.threshold(diff, 25, 255, cv2.THRESH_BINARY)[1]
# 膨胀
diff = cv2.dilate(diff, es, iterations=2)

# 得到图像中目标的轮廓
image, cnts, hierarchy = cv2.findContours(diff.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
for c in cnts:
    if cv2.contourArea(c) < 1500:
        continue
    # 计算矩形边框
    (x, y, w, h) = cv2.boundingRect(c)
    # 绘制矩形
    cv2.rectangle(frame, (x, y), (x + w, y + h), (0, 255, 0), 2)
# 显示图像
cv2.imshow('contours', frame)
cv2.imshow('dif', diff)
if cv2.waitKey(int(1000 / 12)) & 0xFF == ord('q'):
    break

cv2.destroyAllWindows()
camera.release()

运行结果如下:

2背景分割器 knn mog2和GMG

Opencv3有三种背景分割器

K-nearest(knn)

Mixture of Gaussians(MOG2)

Geometric multigid(GMC)

backgroundSubtractor用于分割前景和背景

示例代码如下:

import cv2
import numpy as np

cv2.ocl.setUseOpenCL(False)

cap = cv2.VideoCapture(0)
mog = cv2.createBackgroundSubtractorMOG2()

while (True):
ret, frame = cap.read()
fgmask = mog.apply(frame)
cv2.imshow(‘frame’, fgmask)
if cv2.waitKey(30) & 0xFF == ord(‘q’):
break

cap.release()
cv2.destroyAllWindows()

运行结果如下:

使用backgroundSubtractorKNN来实现运动检测

示例代码如下:

import cv2

cv2.ocl.setUseOpenCL(False)

bs = cv2.createBackgroundSubtractorKNN(detectShadows=True)

读取本地视频

camera = cv2.VideoCapture(‘../traffic.flv’)

while (True):
ret, frame = camera.read()
fgmask = bs.apply(frame.copy())
# 设置阈值
th = cv2.threshold(fgmask, # 源图像
244, # 阈值
255, # 最大值
cv2.THRESH_BINARY)[1] # 阈值类型
# 膨胀
dilated = cv2.dilate(th, # 源图像
cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (3, 3)), # 内核
iterations=2) # 腐蚀次数

# 查找图像中的目标轮廓
image, contours, hier = cv2.findContours(dilated, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
for c in contours:
    if cv2.contourArea(c) > 1600:
        (x, y, w, h) = cv2.boundingRect(c)
        cv2.rectangle(frame, (x, y), (x + w, y + h), (255, 255, 0), 2)

cv2.imshow('mog', fgmask)  # 分割前景与背景
cv2.imshow('thresh', th)  #
cv2.imshow('detection', frame)  # 运动检测结果
if cv2.waitKey(30) & 0xFF == 27:
    break

camera.release()
cv2.destroyAllWindows()

运行结果如下:

均值漂移meanShift

示例代码如下:

import cv2
import numpy as np

取得摄像头图像

cap = cv2.VideoCapture(0)
ret, frame = cap.read()

设置跟踪窗体大小

r, h, c, w = 10, 200, 10, 200
track_window = (c, r, w, h)

提取roi

roi = frame[r:r + h, c:c + w]

转换颜色空间

hsv_roi = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV)

根据阈值构建掩码

mask = cv2.inRange(hsv_roi, np.array((100., 30., 32.)), np.array((180., 120., 255.)))

计算roi图形的彩色直方图

roi_hist = cv2.calcHist([hsv_roi], [0], mask, [180], [0, 180])
cv2.normalize(roi_hist, roi_hist, 0, 255, cv2.NORM_MINMAX)

指定停止条件

term_crit = (cv2.TERM_CRITERIA_EPS | cv2.TERM_CRITERIA_COUNT, 10, 1)

while (True):
ret, frame = cap.read()
if ret == True:
# 更换颜色空间
hsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV)
# histogram back projection calculation 直方图反向投影
dst = cv2.calcBackProject([hsv], [0], roi_hist, [0, 180], 1)
# 均值漂移
ret, track_window = cv2.meanShift(dst, track_window, term_crit)

    # 绘制矩形显示图像
    x, y, w, h = track_window
    img2 = cv2.rectangle(frame, (x, y), (x + w, y + h), 255, 2)
    cv2.imshow('img2', img2)

    # esc退出
    if cv2.waitKey(60) & 0xFF == 27:
        break
else:
    break

cv2.destroyAllWindows()
cap.release()

运行结果如下:

彩色直方图

calHist函数

函数原型:

def calcHist(images, #源图像
channels, #通道列表
mask,#可选的掩码
histSize, #每个维度下直方图数组的大小
ranges,#每一个维度下直方图bin的上下界的数组
hist=None,#输出直方图是一个[]维稠密度的数组
accumulate=None)#累计标志

Camshift

示例代码如下:

!/usr/bin/env python

-- coding: utf-8 --

@Time : 2016/12/15 16:48

@Author : Retacn

@Site : camshift实现物体跟踪

@File : camshift.py

@Software: PyCharm

author = “retacn”
copyright = “property of mankind.”
license = “CN”
version = “0.0.1”
maintainer = “retacn”
email = “[email protected]
status = “Development”

import cv2
import numpy as np

取得摄像头图像

cap = cv2.VideoCapture(0)
ret, frame = cap.read()

设置跟踪窗体大小

r, h, c, w = 300, 200, 400, 300
track_window = (c, r, w, h)

提取roi

roi = frame[r:r + h, c:c + w]

转换颜色空间

hsv_roi = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV)

根据阈值构建掩码

mask = cv2.inRange(hsv_roi, np.array((100., 30., 32.)), np.array((180., 120., 255.)))

计算roi图形的彩色直方图

roi_hist = cv2.calcHist([hsv_roi], [0], mask, [180], [0, 180])
cv2.normalize(roi_hist, roi_hist, 0, 255, cv2.NORM_MINMAX)

指定停止条件

term_crit = (cv2.TERM_CRITERIA_EPS | cv2.TERM_CRITERIA_COUNT, 10, 1)

while (True):
ret, frame = cap.read()
if ret == True:
# 更换颜色空间
hsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV)
# histogram back projection calculation 直方图反向投影
dst = cv2.calcBackProject([hsv], [0], roi_hist, [0, 180], 1)
# 均值漂移
ret, track_window = cv2.CamShift(dst, track_window, term_crit)

    # 绘制矩形显示图像
    pts = cv2.boxPoints(ret)
    pts = np.int0(pts)
    img2 = cv2.polylines(frame, [pts], True, 255, 2)
    cv2.imshow('img2', img2)

    # esc退出
    if cv2.waitKey(60) & 0xFF == 27:
        break
else:
    break

cv2.destroyAllWindows()
cap.release()

运行结果如下:

4 卡尔曼滤波器

函数原型为:

def KalmanFilter(dynamParams=None,#状态的维度
measureParams=None, #测量的维度
controlParams=None,#控制的维度
type=None)#矩阵的类型

示例代码如下:

import cv2
import numpy as np

创建空帧

frame = np.zeros((800, 800, 3), np.uint8)

测量坐标

last_measurement = current_measurement = np.array((2, 1), np.float32)

鼠标运动预测

last_prediction = current_predication = np.zeros((2, 1), np.float32)

def mousemove(event, x, y, s, p):
# 设置全局变量
global frame, measurements, current_measurement, last_measurement, current_predication, last_prediction
last_prediction = current_predication
last_measurement = current_measurement
current_measurement = np.array([[np.float32(x)], [np.float32(y)]])
kalman.correct(current_measurement)
current_predication = kalman.predict()

# 实际移动起始点
lmx, lmy = last_measurement[0], last_measurement[1]
cmx, cmy = current_measurement[0], current_measurement[1]
# 预测线起止点
lpx, lpy = last_prediction[0], last_prediction[1]
cpx, cpy = current_predication[0], current_predication[1]

# 绘制连线
cv2.line(frame, (lmx, lmy), (cmx, cmy), (0, 100, 0))  # 绿色
cv2.line(frame, (lpx, lpy), (cpx, cpy), (0, 0, 200))  # 红色

创建窗体

cv2.namedWindow(‘mouse_detection’)

注册鼠标事件的回调函数

cv2.setMouseCallback(‘mouse_detection’, mousemove)

卡尔曼滤波器

kalman = cv2.KalmanFilter(4, 2)
kalman.measurementMatrix = np.array([[1, 0, 0, 0], [0, 1, 0, 0]], np.float32)
kalman.transitionMatrix = np.array([[1, 0, 1, 0], [0, 1, 0, 1], [0, 0, 1, 0], [0, 0, 0, 1]], np.float32)
kalman.processNoiseCov = np.array([[1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0], [0, 0, 0, 1]], np.float32) * 0.03

while (True):
cv2.imshow(‘mouse_detection’, frame)
if cv2.waitKey(30) & 0xFF == 27:
break

cv2.destroyAllWindows()

运行结果如下:

一个基于行人跟踪的例子

示例代码如下:

import cv2
import numpy as np
import os.path as path
import argparse

font = cv2.FONT_HERSHEY_SIMPLEX

parser = argparse.ArgumentParser()
parser.add_argument(“-a”, “–algorithm”,
help=”m (or nothing) for meanShift and c for camshift”)
args = vars(parser.parse_args())

计算矩阵中心(行人位置)

def center(points):
x = (points[0][0] + points[1][0] + points[2][0] + points[3][0]) / 4
y = (points[0][1] + points[1][1] + points[2][1] + points[3][1]) / 4
# print(np.array([np.float32(x), np.float32(y)], np.float32))
# [ 588. 257.5]
return np.array([np.float32(x), np.float32(y)], np.float32)

行人

class Pedestrian():
def init(self, id, frame, track_window):
self.id = int(id) # 行人id
x, y, w, h = track_window # 跟踪窗体
self.track_window = track_window
# 更换颜色空间
self.roi = cv2.cvtColor(frame[y:y + h, x:x + w], cv2.COLOR_BGR2HSV)
# 计算roi图形的彩色直方图
roi_hist = cv2.calcHist([self.roi], [0], None, [16], [0, 180])
self.roi_hist = cv2.normalize(roi_hist, roi_hist, 0, 255, cv2.NORM_MINMAX)

    # 设置卡尔曼滤波器
    self.kalman = cv2.KalmanFilter(4, 2)
    self.kalman.measurementMatrix = np.array([[1, 0, 0, 0], [0, 1, 0, 0]], np.float32)
    self.kalman.transitionMatrix = np.array([[1, 0, 1, 0], [0, 1, 0, 1], [0, 0, 1, 0], [0, 0, 0, 1]], np.float32)
    self.kalman.processNoiseCov = np.array([[1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0], [0, 0, 0, 1]],
                                           np.float32) * 0.03
    # 测量坐标
    self.measurement = np.array((2, 1), np.float32)
    # 鼠标运动预测
    self.predication = np.zeros((2, 1), np.float32)
    # 指定停止条件
    self.term_crit = (cv2.TERM_CRITERIA_EPS | cv2.TERM_CRITERIA_COUNT, 10, 1)
    self.center = None
    self.update(frame)

def __del__(self):
    print('Pedestrian %d destroyed' % self.id)

# 更新图像帧
def update(self, frame):
    # 更换颜色空间
    hsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV)
    # histogram back projection calculation 直方图反向投影
    back_project = cv2.calcBackProject([hsv], [0], self.roi_hist, [0, 180], 1)

    # camshift
    if args.get('algorithm') == 'c':
        ret, self.track_window = cv2.CamShift(back_project, self.track_window, self.term_crit)
        # 绘制跟踪框
        pts = cv2.boxPoints(ret)
        pts = np.int0(pts)
        self.center = center(pts)
        cv2.polylines(frame, [pts], True, 255, 1)

    # 均值漂移
    if not args.get('algorithm') or args.get('algorithm') == 'm':
        ret, self.track_window = cv2.meanShift(back_project, self.track_window, self.term_crit)
        # 绘制跟踪框
        x, y, w, h = self.track_window
        self.center = center([[x, y], [x + w, y], [x, y + h], [x + w, y + h]])
        cv2.rectangle(frame, (x, y), (x + w, y + h), (255, 255, 0), 2)

    self.kalman.correct(self.center)
    prediction = self.kalman.predict()
    cv2.circle(frame, (int(prediction[0]), int(prediction[1])), 4, (0, 255, 0), -1)
    # 计数器
    cv2.putText(frame, 'ID: %d --> %s' % (self.id, self.center), (11, (self.id + 1) * 25 + 1), font, 0.6, (0, 0, 0),
                1, cv2.LINE_AA)
    # 跟踪窗口坐标
    cv2.putText(frame, 'ID: %d --> %s' % (self.id, self.center), (10, (self.id + 1) * 25), font, 0.6, (0, 255, 0),
                1, cv2.LINE_AA)

def main():
# 加载视频
# camera = cv2.VideoCapture(‘../movie.mpg’)
# camera = cv2.VideoCapture(‘../traffic.flv’)
camera = cv2.VideoCapture(‘../768x576.avi’)
# 初始化背景分割器
history = 20
bs = cv2.createBackgroundSubtractorKNN(detectShadows=True)

# 创建显示主窗口
cv2.namedWindow('surveillance')
pedestrians = {}  # 行人字典
firstFrame = True
frames = 0
fourcc = cv2.VideoWriter_fourcc(*'XVID')
out = cv2.VideoWriter('../output.avi', fourcc, 20.0, (640, 480))

while (True):
    print('----------------------frmae %d----------------' % frames)
    grabbed, frane = camera.read()
    if (grabbed is False):
        print("failed to grab frame")
        break
    ret, frame = camera.read()
    fgmask = bs.apply(frame)

    if frames < history:
        frames += 1
        continue
    # 设置阈值
    th = cv2.threshold(fgmask.copy(), 127, 255, cv2.THRESH_BINARY)[1]
    # 腐蚀
    th = cv2.erode(th, cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (3, 3)), iterations=2)
    # 膨胀
    dilated = cv2.dilate(th, cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (8, 3)), iterations=2)
    # 查找轮廓
    image, contours, hier = cv2.findContours(dilated, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)

    counter = 0
    for c in contours:
        if cv2.contourArea(c) > 500:
            # 边界数组
            (x, y, w, h) = cv2.boundingRect(c)
            # 绘制矩形
            cv2.rectangle(frame, (x, y), (x + w, y + h), (0, 255, 0), 1)
            if firstFrame is True:
                pedestrians[counter] = Pedestrian(counter, frame, (x, y, w, h))
            counter += 1
    # 更新帧内容
    for i, p in pedestrians.items():
        p.update(frame)

    # false 只跟踪已有的行人
    # firstFrame = True
    firstFrame = False
    frames += 1

    # 显示
    cv2.imshow('surveillance', frame)
    out.write(frame)
    if cv2.waitKey(120) & 0xFF == 27:  # esc退出
        break
out.release()
camera.release()

if name == “main“:
main()