基于Tensorflow的戴明回归算法
程序员文章站
2024-03-22 09:40:58
...
1、戴明回归算法
戴明回归最小化,求的是点到回归直线的距离。具体是最小化x值和y值两个方向的误差。
2、Tensorflow实现戴明回归算法
(1)导入编程库,创建会话等
import matplotlib.pyplot as plt
import numpy as np
import tensorflow as tf
from sklearn import datasets
sess = tf.Session()
iris = datasets.load_iris()
x_vals = np.array([x[3] for x in iris.data])
y_vals = np.array([y[0] for y in iris.data])
learning_rate = 0.05
batch_size = 50
x_data = tf.placeholder(shape=[None,1], dtype = tf.float32)
y_target = tf.placeholder(shape =[None,1],dtype = tf.float32)
A = tf.Variable(tf.random_normal(shape=[1,1]))
b = tf.Variable(tf.random_normal(shape=[1,1]))
model_output = tf.add(tf.matmul(x_data,A),b)
(2) 定义损失函数,即点到直线的距离公式
demming_numerator = tf.abs(tf.subtract(y_target, tf.add(tf.matmul(x_data,A),b)))
demming_denominator = tf.sqrt(tf.add(tf.square(A),1))
loss = tf.reduce_mean(tf.truediv(demming_numerator,demming_denominator))
(3) 初始化变量,声明优化器,遍历迭代
init = tf.global_variables_initializer()
sess.run(init)
my_opt = tf.train.GradientDescentOptimizer(learning_rate)
train_step = my_opt.minimize(loss)
loss_vec = []
for i in range(2500):
rand_index = np.random.choice(len(x_vals),size = batch_size)
rand_x = np.transpose([x_vals[rand_index]])
rand_y = np.transpose([y_vals[rand_index]])
sess.run(train_step,feed_dict={x_data:rand_x,y_target:rand_y})
temp_loss = sess.run(loss ,feed_dict={x_data:rand_x,y_target:rand_y})
loss_vec.append(temp_loss)
(4)输出优化结构
[slope] = sess.run(A)
[y_intercept] = sess.run(b)
best_fit = []
for i in x_vals:
best_fit.append(slope*i + y_intercept)
plt.plot(x_vals,y_vals,'o',label='Data Points')
plt.plot(x_vals,best_fit,'r-',label='Best fit line',linewidth=3)
plt.legend(loc='upper left')
plt.show()
plt.plot(loss_vec,'k-')
5、运行结果
上一篇: Elasticsearch(三) RESTful API
下一篇: 8月20日学习内容