用TensorFlow实现lasso回归和岭回归算法的示例
也有些正则方法可以限制回归算法输出结果中系数的影响,其中最常用的两种正则方法是lasso回归和岭回归。
lasso回归和岭回归算法跟常规线性回归算法极其相似,有一点不同的是,在公式中增加正则项来限制斜率(或者净斜率)。这样做的主要原因是限制特征对因变量的影响,通过增加一个依赖斜率a的损失函数实现。
对于lasso回归算法,在损失函数上增加一项:斜率a的某个给定倍数。我们使用tensorflow的逻辑操作,但没有这些操作相关的梯度,而是使用阶跃函数的连续估计,也称作连续阶跃函数,其会在截止点跳跃扩大。一会就可以看到如何使用lasso回归算法。
对于岭回归算法,增加一个l2范数,即斜率系数的l2正则。
# lasso and ridge regression # lasso回归和岭回归 # # this function shows how to use tensorflow to solve lasso or # ridge regression for # y = ax + b # # we will use the iris data, specifically: # y = sepal length # x = petal width # import required libraries import matplotlib.pyplot as plt import sys import numpy as np import tensorflow as tf from sklearn import datasets from tensorflow.python.framework import ops # specify 'ridge' or 'lasso' regression_type = 'lasso' # clear out old graph ops.reset_default_graph() # create graph sess = tf.session() ### # load iris data ### # iris.data = [(sepal length, sepal width, petal length, petal width)] iris = datasets.load_iris() x_vals = np.array([x[3] for x in iris.data]) y_vals = np.array([y[0] for y in iris.data]) ### # model parameters ### # declare batch size batch_size = 50 # initialize placeholders x_data = tf.placeholder(shape=[none, 1], dtype=tf.float32) y_target = tf.placeholder(shape=[none, 1], dtype=tf.float32) # make results reproducible seed = 13 np.random.seed(seed) tf.set_random_seed(seed) # create variables for linear regression a = tf.variable(tf.random_normal(shape=[1,1])) b = tf.variable(tf.random_normal(shape=[1,1])) # declare model operations model_output = tf.add(tf.matmul(x_data, a), b) ### # loss functions ### # select appropriate loss function based on regression type if regression_type == 'lasso': # declare lasso loss function # 增加损失函数,其为改良过的连续阶跃函数,lasso回归的截止点设为0.9。 # 这意味着限制斜率系数不超过0.9 # lasso loss = l2_loss + heavyside_step, # where heavyside_step ~ 0 if a < constant, otherwise ~ 99 lasso_param = tf.constant(0.9) heavyside_step = tf.truediv(1., tf.add(1., tf.exp(tf.multiply(-50., tf.subtract(a, lasso_param))))) regularization_param = tf.multiply(heavyside_step, 99.) loss = tf.add(tf.reduce_mean(tf.square(y_target - model_output)), regularization_param) elif regression_type == 'ridge': # declare the ridge loss function # ridge loss = l2_loss + l2 norm of slope ridge_param = tf.constant(1.) ridge_loss = tf.reduce_mean(tf.square(a)) loss = tf.expand_dims(tf.add(tf.reduce_mean(tf.square(y_target - model_output)), tf.multiply(ridge_param, ridge_loss)), 0) else: print('invalid regression_type parameter value',file=sys.stderr) ### # optimizer ### # declare optimizer my_opt = tf.train.gradientdescentoptimizer(0.001) train_step = my_opt.minimize(loss) ### # run regression ### # initialize variables init = tf.global_variables_initializer() sess.run(init) # training loop loss_vec = [] for i in range(1500): rand_index = np.random.choice(len(x_vals), size=batch_size) rand_x = np.transpose([x_vals[rand_index]]) rand_y = np.transpose([y_vals[rand_index]]) sess.run(train_step, feed_dict={x_data: rand_x, y_target: rand_y}) temp_loss = sess.run(loss, feed_dict={x_data: rand_x, y_target: rand_y}) loss_vec.append(temp_loss[0]) if (i+1)%300==0: print('step #' + str(i+1) + ' a = ' + str(sess.run(a)) + ' b = ' + str(sess.run(b))) print('loss = ' + str(temp_loss)) print('\n') ### # extract regression results ### # get the optimal coefficients [slope] = sess.run(a) [y_intercept] = sess.run(b) # get best fit line best_fit = [] for i in x_vals: best_fit.append(slope*i+y_intercept) ### # plot results ### # plot regression line against data points plt.plot(x_vals, y_vals, 'o', label='data points') plt.plot(x_vals, best_fit, 'r-', label='best fit line', linewidth=3) plt.legend(loc='upper left') plt.title('sepal length vs pedal width') plt.xlabel('pedal width') plt.ylabel('sepal length') plt.show() # plot loss over time plt.plot(loss_vec, 'k-') plt.title(regression_type + ' loss per generation') plt.xlabel('generation') plt.ylabel('loss') plt.show()
输出结果:
step #300 a = [[ 0.77170753]] b = [[ 1.82499862]]
loss = [[ 10.26473045]]
step #600 a = [[ 0.75908542]] b = [[ 3.2220633]]
loss = [[ 3.06292033]]
step #900 a = [[ 0.74843585]] b = [[ 3.9975822]]
loss = [[ 1.23220456]]
step #1200 a = [[ 0.73752165]] b = [[ 4.42974091]]
loss = [[ 0.57872057]]
step #1500 a = [[ 0.72942668]] b = [[ 4.67253113]]
loss = [[ 0.40874988]]
通过在标准线性回归估计的基础上,增加一个连续的阶跃函数,实现lasso回归算法。由于阶跃函数的坡度,我们需要注意步长,因为太大的步长会导致最终不收敛。
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。