欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页  >  IT编程

Java多线程程序中synchronized修饰方法的使用实例

程序员文章站 2024-03-12 20:44:44
在java 5以前,是用synchronized关键字来实现锁的功能。 synchronized关键字可以作为方法的修饰符(同步方法),也可作用于函数内的语句(同步代码块...

在java 5以前,是用synchronized关键字来实现锁的功能。

synchronized关键字可以作为方法的修饰符(同步方法),也可作用于函数内的语句(同步代码块)。

掌握synchronized,关键是要掌握把那个东西作为锁。对于类的非静态方法(成员方法)而言,意味着要取得对象实例的锁;对于类的静态方法(类方法)而言,要取得类的class对象的锁;对于同步代码块,要指定取得的是哪个对象的锁。同步非静态方法可以视为包含整个方法的synchronized(this) { … }代码块。   

不管是同步代码块还是同步方法,每次只有一个线程可以进入(在同一时刻最多只有一个线程执行该段代码。),如果其他线程试图进入(不管是同一同步块还是不同的同步块),jvm会将它们挂起(放入到等锁池中)。这种结构在并发理论中称为临界区(critical section)。

在jvm内部,为了提高效率,同时运行的每个线程都会有它正在处理的数据的缓存副本,当我们使用synchronzied进行同步的时候,真正被同步的是在不同线程中表示被锁定对象的内存块(副本数据会保持和主内存的同步,现在知道为什么要用同步这个词汇了吧),简单的说就是在同步块或同步方法执行完后,对被锁定的对象做的任何修改要在释放锁之前写回到主内存中;在进入同步块得到锁之后,被锁定对象的数据是从主内存中读出来的,持有锁的线程的数据副本一定和主内存中的数据视图是同步的 。

下面举具体的例子来说明synchronized的各种情况。

synchronized同步方法

首先来看同步方法的例子:

public class synchronizedtest1 extends thread 
{ 
  private synchronized void testsynchronizedmethod() 
  { 
    for (int i = 0; i < 10; i++) 
    { 
      system.out.println(thread.currentthread().getname() 
          + " testsynchronizedmethod:" + i); 
 
      try 
      { 
        thread.sleep(100); 
      } 
      catch (interruptedexception e) 
      { 
        e.printstacktrace(); 
      } 
    } 
  } 
 
  @override 
  public void run() 
  { 
    testsynchronizedmethod(); 
  } 
 
  public static void main(string[] args) 
  { 
 
        synchronizedtest1 t = new synchronizedtest1(); 
    t.start(); 
    t.testsynchronizedmethod(); 
  } 
} 

运行该程序输出结果为:

main testsynchronizedmethod:0 
main testsynchronizedmethod:1 
main testsynchronizedmethod:2 
main testsynchronizedmethod:3 
main testsynchronizedmethod:4 
main testsynchronizedmethod:5 
main testsynchronizedmethod:6 
main testsynchronizedmethod:7 
main testsynchronizedmethod:8 
main testsynchronizedmethod:9 
thread-0 testsynchronizedmethod:0 
thread-0 testsynchronizedmethod:1 
thread-0 testsynchronizedmethod:2 
thread-0 testsynchronizedmethod:3 
thread-0 testsynchronizedmethod:4 
thread-0 testsynchronizedmethod:5 
thread-0 testsynchronizedmethod:6 
thread-0 testsynchronizedmethod:7 
thread-0 testsynchronizedmethod:8 
thread-0 testsynchronizedmethod:9 

可以看到testsynchronizedmethod方法在两个线程之间同步执行。

如果此时将main方法修改为如下所示,则两个线程并不能同步执行,因为此时两个线程的同步监视器不是同一个对象,不能起到同步的作用。

public static void main(string[] args) 
  { 
    thread t = new synchronizedtest1(); 
    t.start(); 
     
    thread t1 = new synchronizedtest1(); 
    t1.start(); 
  } 

此时输出结果如下所示:

thread-0 testsynchronizedmethod:0 
thread-1 testsynchronizedmethod:0 
thread-0 testsynchronizedmethod:1 
thread-1 testsynchronizedmethod:1 
thread-0 testsynchronizedmethod:2 
thread-1 testsynchronizedmethod:2 
thread-0 testsynchronizedmethod:3 
thread-1 testsynchronizedmethod:3 
thread-0 testsynchronizedmethod:4 
thread-1 testsynchronizedmethod:4 
thread-0 testsynchronizedmethod:5 
thread-1 testsynchronizedmethod:5 
thread-0 testsynchronizedmethod:6 
thread-1 testsynchronizedmethod:6 
thread-0 testsynchronizedmethod:7 
thread-1 testsynchronizedmethod:7 
thread-0 testsynchronizedmethod:8 
thread-1 testsynchronizedmethod:8 
thread-0 testsynchronizedmethod:9 
thread-1 testsynchronizedmethod:9 

若想修改后的main方法能够在两个线程之间同步运行,需要将testsynchronizedmethod方法声明为静态方法,这样两个线程的监视器是同一个对象(类对象),能够同步执行。修改后的代码如下所示:

public class synchronizedtest1 extends thread 
{ 
  private static synchronized void testsynchronizedmethod() 
  { 
    for (int i = 0; i < 10; i++) 
    { 
      system.out.println(thread.currentthread().getname() 
          + " testsynchronizedmethod:" + i); 
 
      try 
      { 
        thread.sleep(100); 
      } 
      catch (interruptedexception e) 
      { 
        e.printstacktrace(); 
      } 
    } 
  } 
 
  @override 
  public void run() 
  { 
    testsynchronizedmethod(); 
  } 
 
  public static void main(string[] args) 
  { 
    thread t = new synchronizedtest1(); 
    t.start(); 
     
    thread t1 = new synchronizedtest1(); 
    t1.start(); 
  } 
} 

输出结果如下:

thread-0 testsynchronizedmethod:0 
thread-0 testsynchronizedmethod:1 
thread-0 testsynchronizedmethod:2 
thread-0 testsynchronizedmethod:3 
thread-0 testsynchronizedmethod:4 
thread-0 testsynchronizedmethod:5 
thread-0 testsynchronizedmethod:6 
thread-0 testsynchronizedmethod:7 
thread-0 testsynchronizedmethod:8 
thread-0 testsynchronizedmethod:9 
thread-1 testsynchronizedmethod:0 
thread-1 testsynchronizedmethod:1 
thread-1 testsynchronizedmethod:2 
thread-1 testsynchronizedmethod:3 
thread-1 testsynchronizedmethod:4 
thread-1 testsynchronizedmethod:5 
thread-1 testsynchronizedmethod:6 
thread-1 testsynchronizedmethod:7 
thread-1 testsynchronizedmethod:8 
thread-1 testsynchronizedmethod:9 

同步块的情况与同步方法类似,只是同步块将同步控制的粒度缩小,这样能够更好的发挥多线程并行执行的效率。
使用this对象控制同一对象实例之间的同步:

public class synchronizedtest2 extends thread 
{ 
  private void testsynchronizedblock() 
  { 
    synchronized (this) 
    { 
      for (int i = 0; i < 10; i++) 
      { 
        system.out.println(thread.currentthread().getname() 
            + " testsynchronizedblock:" + i); 
 
        try 
        { 
          thread.sleep(100); 
        } 
        catch (interruptedexception e) 
        { 
          e.printstacktrace(); 
        } 
      } 
    } 
  } 
 
  @override 
  public void run() 
  { 
    testsynchronizedblock(); 
  } 
 
  public static void main(string[] args) 
  { 
    synchronizedtest2 t = new synchronizedtest2(); 
    t.start(); 
 
    t.testsynchronizedblock(); 
  } 
} 

输出结果:

main testsynchronizedblock:0 
main testsynchronizedblock:1 
main testsynchronizedblock:2 
main testsynchronizedblock:3 
main testsynchronizedblock:4 
main testsynchronizedblock:5 
main testsynchronizedblock:6 
main testsynchronizedblock:7 
main testsynchronizedblock:8 
main testsynchronizedblock:9 
thread-0 testsynchronizedblock:0 
thread-0 testsynchronizedblock:1 
thread-0 testsynchronizedblock:2 
thread-0 testsynchronizedblock:3 
thread-0 testsynchronizedblock:4 
thread-0 testsynchronizedblock:5 
thread-0 testsynchronizedblock:6 
thread-0 testsynchronizedblock:7 
thread-0 testsynchronizedblock:8 
thread-0 testsynchronizedblock:9 

使用class对象控制不同实例之间的同步:

public class synchronizedtest2 extends thread 
{ 
  private void testsynchronizedblock() 
  { 
    synchronized (synchronizedtest2.class) 
    { 
      for (int i = 0; i < 10; i++) 
      { 
        system.out.println(thread.currentthread().getname() 
            + " testsynchronizedblock:" + i); 
 
        try 
        { 
          thread.sleep(100); 
        } 
        catch (interruptedexception e) 
        { 
          e.printstacktrace(); 
        } 
      } 
    } 
  } 
 
  @override 
  public void run() 
  { 
    testsynchronizedblock(); 
  } 
 
  public static void main(string[] args) 
  { 
    thread t = new synchronizedtest2(); 
    t.start(); 
 
    thread t2 = new synchronizedtest2(); 
    t2.start(); 
  } 
} 

输出结果:

thread-0 testsynchronizedblock:0 
thread-0 testsynchronizedblock:1 
thread-0 testsynchronizedblock:2 
thread-0 testsynchronizedblock:3 
thread-0 testsynchronizedblock:4 
thread-0 testsynchronizedblock:5 
thread-0 testsynchronizedblock:6 
thread-0 testsynchronizedblock:7 
thread-0 testsynchronizedblock:8 
thread-0 testsynchronizedblock:9 
thread-1 testsynchronizedblock:0 
thread-1 testsynchronizedblock:1 
thread-1 testsynchronizedblock:2 
thread-1 testsynchronizedblock:3 
thread-1 testsynchronizedblock:4 
thread-1 testsynchronizedblock:5 
thread-1 testsynchronizedblock:6 
thread-1 testsynchronizedblock:7 
thread-1 testsynchronizedblock:8 
thread-1 testsynchronizedblock:9 

 
使用synchronized关键字进行同步控制时,一定要把握好对象监视器,只有获得监视器的进程可以运行,其它都需要等待获取监视器。任何一个非null的对象都可以作为对象监视器,当synchronized作用在方法上时,锁住的便是对象实例(this);当作用在静态方法时锁住的便是对象对应的class实例

两个线程同时访问一个对象的同步方法
当两个并发线程访问同一个对象的同步方法时,只能有一个线程得到执行。另一个线程必须等待当前线程执行完这个以后才能执行。

public class twothread {
  public static void main(string[] args) {
    final twothread twothread = new twothread();

    thread t1 = new thread(new runnable() {
      public void run() {
        twothread.syncmethod();
      }
    }, "a");
    thread t2 = new thread(new runnable() {
      public void run() {
        twothread.syncmethod();
      }
    }, "b");

    t1.start();
    t2.start();
  }

  public synchronized void syncmethod() {
    for (int i = 0; i < 5; i++) {
      system.out.println(thread.currentthread().getname() + " : " + i);
      try {
        thread.sleep(500);
      } catch (interruptedexception ie) {
      }
    }
  }

}

输出结果:

a : 0
a : 1
a : 2
a : 3
a : 4
b : 0
b : 1
b : 2
b : 3
b : 4

两个线程访问的是两个对象的同步方法
这种情况下,synchronized不起作用,跟普通的方法一样。因为对应的锁是各自的对象。

public class twoobject {
  public static void main(string[] args) {
    final twoobject object1 = new twoobject();
    thread t1 = new thread(new runnable() {
      public void run() {
        object1.syncmethod();
      }
    }, "object1");
    t1.start();

    final twoobject object2 = new twoobject();
    thread t2 = new thread(new runnable() {
      public void run() {
        object2.syncmethod();
      }
    }, "object2");
    t2.start();
  }

  public synchronized void syncmethod() {
    for (int i = 0; i < 5; i++) {
      system.out.println(thread.currentthread().getname() + " : " + i);
      try {
        thread.sleep(500);
      } catch (interruptedexception ie) {
      }
    }
  }

}

其中一种可能的输出结果:

object2 : 0
object1 : 0
object1 : 1
object2 : 1
object2 : 2
object1 : 2
object2 : 3
object1 : 3
object1 : 4
object2 : 4

两个线程访问的是synchronized的静态方法
这种情况,由于锁住的是class,在任何时候,该静态方法只有一个线程可以执行。

同时访问同步方法与非同步方法
当一个线程访问对象的一个同步方法时,另一个线程仍然可以访问该对象中的非同步方法。

public class syncandnosync {
  public static void main(string[] args) {
    final syncandnosync syncandnosync = new syncandnosync();

    thread t1 = new thread(new runnable() {
      public void run() {
        syncandnosync.syncmethod();
      }
    }, "a");
    t1.start();

    thread t2 = new thread(new runnable() {
      public void run() {
        syncandnosync.nosyncmethod();
      }
    }, "b");
    t2.start();
  }

  public synchronized void syncmethod() {
    for (int i = 0; i < 5; i++) {
      system.out.println(thread.currentthread().getname() + " at syncmethod(): " + i);
      try {
        thread.sleep(500);
      } catch (interruptedexception ie) {
      }
    }
  }

  public void nosyncmethod() {
    for (int i = 0; i < 5; i++) {
      system.out.println(thread.currentthread().getname() + " at nosyncmethod(): " + i);
      try {
        thread.sleep(500);
      } catch (interruptedexception ie) {
      }
    }
  }

}

一种可能的输出结果:

b at nosyncmethod(): 0
a at syncmethod(): 0
b at nosyncmethod(): 1
a at syncmethod(): 1
b at nosyncmethod(): 2
a at syncmethod(): 2
b at nosyncmethod(): 3
a at syncmethod(): 3
a at syncmethod(): 4
b at nosyncmethod(): 4

访问同一个对象的不同同步方法
当一个线程访问一个对象的同步方法a时,其他线程对该对象中所有其它同步方法的访问将被阻塞。因为第一个线程已经获得了对象锁,其他线程得不到锁,则虽然是访问不同的方法,但是没有获得锁,也无法访问。

public class twosyncmethod {
  public static void main(string[] args) {
    final twosyncmethod twosyncmethod = new twosyncmethod();

    thread t1 = new thread(new runnable() {
      public void run() {
        twosyncmethod.syncmethod1();
      }
    }, "a");
    t1.start();

    thread t2 = new thread(new runnable() {
      public void run() {
        twosyncmethod.syncmethod2();
      }
    }, "b");
    t2.start();
  }

  public synchronized void syncmethod1() {
    for (int i = 0; i < 5; i++) {
      system.out.println(thread.currentthread().getname() + " at syncmethod1(): " + i);
      try {
        thread.sleep(500);
      } catch (interruptedexception ie) {
      }
    }
  }

  public synchronized void syncmethod2() {
    for (int i = 0; i < 5; i++) {
      system.out.println(thread.currentthread().getname() + " at syncmethod2(): " + i);
      try {
        thread.sleep(500);
      } catch (interruptedexception ie) {
      }
    }
  }

}

输出结果:

a at syncmethod1(): 0
a at syncmethod1(): 1
a at syncmethod1(): 2
a at syncmethod1(): 3
a at syncmethod1(): 4
b at syncmethod2(): 0
b at syncmethod2(): 1
b at syncmethod2(): 2
b at syncmethod2(): 3
b at syncmethod2(): 4