矩阵等价-相似-合同
1.矩阵等价
2.矩阵相似
3.矩阵合同
矩阵等价
定义
如果矩阵A经过有限次初等行变换变成矩阵B,就成矩阵A与B行等价。
如果矩阵A经过有限次初等列变换变成矩阵B,就成矩阵A与B列等价。
如果矩阵A经过有限次初等变换变成矩阵B,就称矩阵A与B等价。
性质
反身性:A~A
对称性:若AB,则BA
传递性:若AB,BC,则A~C
推论:
有两个m×n阶矩阵A和B,如果这两个矩阵满足B=QAP(P是n×n阶可逆矩阵,Q是m×m阶可逆矩阵),那么这两个矩阵之间是等价关系。
r(A)=r(B),且A与B为同型矩阵。
矩阵相似
定义
设A、B都是n阶矩阵,若有可逆矩阵P,使P(-1)AP=B,则称B是A的相似矩阵,对A进行运算P(-1)AP称对A进行的相似变换,可逆矩阵P称为把A变成B的相似变换矩阵。
性质
1.若n阶矩阵A与B相似,则A与B的特征多项式相同,从而A与B的特征值相同。
2.n阶矩阵A与对角矩阵相似(A可以对角化)的充分必要条件是A有n个线性无关的特征向量。
推论
若n阶矩阵A与对角矩阵相似,则λ1,λ2,λ3…λn即是A的n个特征值。
如果n阶矩阵A的n个特征值互不相等,则A与对角矩阵相似。
A与某对角矩阵相似,B也与该对角矩阵相似,则A与B相似。
|A|=|B|,r(A)=r(B),A与B迹相等。
矩阵合同
一般在线代问题中,研究合同矩阵的场景是在二次型中。二次型用的矩阵是实对称矩阵。两个实对称矩阵合同的充要条件是它们的正负惯性指数相同。由这个条件可以推知,合同矩阵等秩。
定义
b两个n阶矩阵A和B,如果存在可逆矩阵C使得C^(T)AC=B,则称A与B合同,并称由A到B的变换为合同变换,称C为合同变换的矩阵。
性质
一个二次型是半正定二次型,当且仅当它的正惯性指数等于它对应矩阵的秩。对于半正定二次型,其对应的对称矩阵在实数域内可以合同到一个对角线元素只由0和1构成的对角矩阵。
正定二次型对应矩阵一定是可逆矩阵,且行列式大于0。对于正定二次型,其对应的对称矩阵在实数域内合同于单位阵。一个n元二次型是正定二次型,当且仅当它的正惯性指数是n,同样的可以定义半负定、负定和不定的二次型。
一、矩阵等价、相似和合同之间的区别:
1、等价,相似和合同三者都是等价关系。
2、矩阵相似或合同必等价,反之不一定成立。
3、矩阵等价,只需满足两矩阵之间可以通过一系列可逆变换,也即若干可逆矩阵相乘得到。
4、矩阵相似,则存在可逆矩阵P使得,AP=PB。
5、矩阵合同,则存在可逆矩阵P使得,P^TAP=B。
6、当上述矩阵P是正交矩阵时,即PT=P(-1),则有A,B之间既满足相似,又满足合同关系。
二、矩阵等价、相似、合同之间联系:
1、矩阵等秩是相似、合同、等价的必要条件,相似、合同、等价是等秩的充分条件。
2、矩阵等价是相似、合同的必要条件,相似、合同是等价的充分条件。
3、 矩阵相似、合同之间没有充要关系,存在相似但不合同的矩阵,也存在合同但不相似的矩阵。
4、总结起来就是:相似=>等价,合同=>等价,等价=>等秩。