欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

补码原理——负数为什么要用补码表示

程序员文章站 2024-01-30 23:18:10
...

文首

  我们都知道负数在计算机中是以补码(忘了补码定义的戳这里)表示的,那为什么呢?本文尝试了解补码的原理,而要想理解它,首先得理解算术中“”的概念。所以首先看一下什么是模,然后通过一个小例子来理解补码。

1 模(Modulo)

1.1 什么是模数

In mathematics, modular arithmetic is a system of arithmetic for integers, where numbers “wrap around” upon reaching a certain value—the modulus (plural moduli).

1.1.1 理解

  是指一个计量系统的计数范围。如时钟等。计算机也是一个计算器,它也是有一个计量范围,即都存在一个“模”。
  如时钟的计量范围是0~11,模 = 12。
  32位计算机的计量范围是2^32,模 = 2^32
  “模”是计量器产生“溢出”的量,它的值在计量器上表示不出来,计量器上只能表示出模的余数,如12的余数有0,1,2,3,4,5,6,7,8,9,10,11。

1.2 补数

  假设当前时针指向11点,而准确时间是8点,调整时间可有以下两种拨法:

  • 一种是倒拨3小时,即:11-3=8
  • 另一种是顺拨9小时:11+9=12+8=8

  在以模为12的系统中,加9和减3效果是一样的,因此凡是减3运算,都可以用加9来代替。对“模”12而言,9和3互为补数(二者相加等于模)。所以我们可以得出一个结论,即在有模的计量系统中,减一个数等于加上它的补数,从而实现将减法运算转化为加法运算的目的。

1.3 再谈“模”

  从上面的化减法为加法,以及所谓的溢出等等可以看到,“模”可以说就是一个太极阴阳转化,周而复始,无始无终,循环往复

2 补码原理

  计算机上的补码就是算术里的补数
  设我们有一个 4 位的计算机,则其计量范围即模是
2^4 = 16,所以其能够表示的范围是0~15,现在以计算 5 - 3为例,我们知道在计算机中,加法器实现最简单,所以很多运算最终都要转为加法运算,因此5-3就要转化为加法:

 # 按以上理论,减一个数等于加上它的补数,所以
 5 - 3
 # 等价于 
 5 + (16 - 3)   // 算术运算单元将减法转化为加法
 # 用二进制表示则为:
 0101 + (10000 - 0011)
 # 等价于
 0101 + ((1 + 1111) - 0011)
 # 等价于
 0101 + (1 + (1111 - 0011))
 # 等价于
 0101 + (1 + 1100) // 括号内是3(0011)的反码+1,正是补码的定义
 # 等价于
 0101 + 1101
 # 所以从这里可以得到
 -3 = 1101
 # 即 `-3` 在计算机中的二进制表示为 `1101`,正是“ -3 的正值 3(`0011`)的补码(`1101`)”。

  因为我们的计算机是 4 位的,第一位“溢出”了,所以我们只保存了 4,即 0010,而当计算机去读取时这正是我们所期望的 2!!叹为观止吧,天才般的设计!感恩伏羲莱布尼兹冯诺依曼

文末

  一阴一阳之谓道。万事万物,阴阳转化,周而复始,无始无终,循环往复。

相关标签: 计算机原理