欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

pandas ix & iloc &loc 的联系和区别

程序员文章站 2024-01-30 12:12:52
...

参考了几个博客,做了以下整理,如有雷同,是我抄别人的。。

参考链接:https://blog.csdn.net/xw_classmate/article/details/51333646

https://blog.csdn.net/hecongqing/article/details/61927615

loc——通过行标签索引行数据 
iloc——通过行号索引行数据 
ix——通过行标签或者行号索引行数据(基于loc和iloc 的混合) 
同理,索引列数据也是如此!

举例说明: 
1、分别使用loc、iloc、ix 索引第一行的数据: 
(1)loc

import pandas as pd
data=[[1,2,3],[4,5,6]]
index=['a','b']#行号
columns=['c','d','e']#列号
df=pd.DataFrame(data,index=index,columns=columns)#生成一个数据框

#print df.loc['a']
'''
c    1
d    2
e    3
'''

print df.loc[0]
#这个就会出现错误
'''
TypeError: cannot do label indexing on <class 'pandas.indexes.base.Index'> 
with these indexers [1] of <type 'int'>
'''

(2)iloc

import pandas as pd
data=[[1,2,3],[4,5,6]]
index=['a','b']#行号
columns=['c','d','e']#列号
df=pd.DataFrame(data,index=index,columns=columns)#生成一个数据框

print df.iloc[0]
'''
c    1
d    2
e    3
'''
print df.iloc['a']
'''
TypeError: cannot do positional indexing on <class 'pandas.indexes.base.Index'> 
with these indexers [a] of <type 'str'>
'''

(3)ix

import pandas as pd
data=[[1,2,3],[4,5,6]]
index=['a','b']#行号
columns=['c','d','e']#列号
df=pd.DataFrame(data,index=index,columns=columns)#生成一个数据框

print df.ix[0]
'''
c    1
d    2
e    3
'''
print df.ix['a']
'''
c    1
d    2
e    3
'''

2、分别使用loc、iloc、ix 索引第一列的数据:

import pandas as pd
data=[[1,2,3],[4,5,6]]
index=['a','b']#行号
columns=['c','d','e']#列号
df=pd.DataFrame(data,index=index,columns=columns)#生成一个数据框

print df.loc[:,['c']]

print df.iloc[:,[0]]

print df.ix[:,['c']]

print df.ix[:,[0]]
#结果都为
'''
   c
a  1
b  4
'''

3、分别使用loc、iloc、ix 索引多行的数据:

import pandas as pd
data=[[1,2,3],[4,5,6]]
index=['a','b']#行号
columns=['c','d','e']#列号
df=pd.DataFrame(data,index=index,columns=columns)#生成一个数据框

print df.loc['a':'b']

print df.iloc[0:1]

print df.ix['a':'b']

print df.ix[0:1]
#结果都为
'''
   c  d  e
a  1  2  3
b  4  5  6
'''

4、分别使用loc、iloc、ix 索引多列的数据:

import pandas as pd
data=[[1,2,3],[4,5,6]]
index=['a','b']#行号
columns=['c','d','e']#列号
df=pd.DataFrame(data,index=index,columns=columns)#生成一个数据框

print df.loc[:,'c':'d']

print df.iloc[:,0:2]

print df.ix[:,'c':'d']

print df.ix[:,0:2]
#结果都为
'''
   c  d
a  1  2
b  4  5
'''

 

 

 

1.3 如果想索引列数据,像这样做会报错

import pandas as pd
data = [[1,2,3],[4,5,6]]
index = ['d','e']
columns=['a','b','c']
df = pd.DataFrame(data=data, index=index, columns=columns)
print df.loc['a']
'''
KeyError: 'the label [a] is not in the [index]'
'''
 

1.4 loc可以获取多行数据

import pandas as pd
data = [[1,2,3],[4,5,6]]
index = ['d','e']
columns=['a','b','c']
df = pd.DataFrame(data=data, index=index, columns=columns)
print df.loc['d':]
'''
   a  b  c
d  1  2  3
e  4  5  6
'''
 

1.5 loc扩展——索引某行某列

import pandas as pd
data = [[1,2,3],[4,5,6]]
index = ['d','e']
columns=['a','b','c']
df = pd.DataFrame(data=data, index=index, columns=columns)
print df.loc['d',['b','c']]
'''
b    2
c    3
'''
 

1,6 loc扩展——索引某列

import pandas as pd
data = [[1,2,3],[4,5,6]]
index = ['d','e']
columns=['a','b','c']
df = pd.DataFrame(data=data, index=index, columns=columns)
print df.loc[:,['c']]
'''
   c
d  3
e  6
'''
 

当然获取某列数据最直接的方式是df.[列标签],但是当列标签未知时可以通过这种方式获取列数据。

需要注意的是,dataframe的索引[1:3]是包含1,2,3的,与平时的不同。