用TensorFlow实现lasso回归和岭回归算法的示例
也有些正则方法可以限制回归算法输出结果中系数的影响,其中最常用的两种正则方法是lasso回归和岭回归。
lasso回归和岭回归算法跟常规线性回归算法极其相似,有一点不同的是,在公式中增加正则项来限制斜率(或者净斜率)。这样做的主要原因是限制特征对因变量的影响,通过增加一个依赖斜率A的损失函数实现。
对于lasso回归算法,在损失函数上增加一项:斜率A的某个给定倍数。我们使用TensorFlow的逻辑操作,但没有这些操作相关的梯度,而是使用阶跃函数的连续估计,也称作连续阶跃函数,其会在截止点跳跃扩大。一会就可以看到如何使用lasso回归算法。
对于岭回归算法,增加一个L2范数,即斜率系数的L2正则。
# LASSO and Ridge Regression # lasso回归和岭回归 # # This function shows how to use TensorFlow to solve LASSO or # Ridge regression for # y = Ax + b # # We will use the iris data, specifically: # y = Sepal Length # x = Petal Width # import required libraries import matplotlib.pyplot as plt import sys import numpy as np import tensorflow as tf from sklearn import datasets from tensorflow.python.framework import ops # Specify 'Ridge' or 'LASSO' regression_type = 'LASSO' # clear out old graph ops.reset_default_graph() # Create graph sess = tf.Session() ### # Load iris data ### # iris.data = [(Sepal Length, Sepal Width, Petal Length, Petal Width)] iris = datasets.load_iris() x_vals = np.array([x[3] for x in iris.data]) y_vals = np.array([y[0] for y in iris.data]) ### # Model Parameters ### # Declare batch size batch_size = 50 # Initialize placeholders x_data = tf.placeholder(shape=[None, 1], dtype=tf.float32) y_target = tf.placeholder(shape=[None, 1], dtype=tf.float32) # make results reproducible seed = 13 np.random.seed(seed) tf.set_random_seed(seed) # Create variables for linear regression A = tf.Variable(tf.random_normal(shape=[1,1])) b = tf.Variable(tf.random_normal(shape=[1,1])) # Declare model operations model_output = tf.add(tf.matmul(x_data, A), b) ### # Loss Functions ### # Select appropriate loss function based on regression type if regression_type == 'LASSO': # Declare Lasso loss function # 增加损失函数,其为改良过的连续阶跃函数,lasso回归的截止点设为0.9。 # 这意味着限制斜率系数不超过0.9 # Lasso Loss = L2_Loss + heavyside_step, # Where heavyside_step ~ 0 if A < constant, otherwise ~ 99 lasso_param = tf.constant(0.9) heavyside_step = tf.truep(1., tf.add(1., tf.exp(tf.multiply(-50., tf.subtract(A, lasso_param))))) regularization_param = tf.multiply(heavyside_step, 99.) loss = tf.add(tf.reduce_mean(tf.square(y_target - model_output)), regularization_param) elif regression_type == 'Ridge': # Declare the Ridge loss function # Ridge loss = L2_loss + L2 norm of slope ridge_param = tf.constant(1.) ridge_loss = tf.reduce_mean(tf.square(A)) loss = tf.expand_dims(tf.add(tf.reduce_mean(tf.square(y_target - model_output)), tf.multiply(ridge_param, ridge_loss)), 0) else: print('Invalid regression_type parameter value',file=sys.stderr) ### # Optimizer ### # Declare optimizer my_opt = tf.train.GradientDescentOptimizer(0.001) train_step = my_opt.minimize(loss) ### # Run regression ### # Initialize variables init = tf.global_variables_initializer() sess.run(init) # Training loop loss_vec = [] for i in range(1500): rand_index = np.random.choice(len(x_vals), size=batch_size) rand_x = np.transpose([x_vals[rand_index]]) rand_y = np.transpose([y_vals[rand_index]]) sess.run(train_step, feed_dict={x_data: rand_x, y_target: rand_y}) temp_loss = sess.run(loss, feed_dict={x_data: rand_x, y_target: rand_y}) loss_vec.append(temp_loss[0]) if (i+1)%300==0: print('Step #' + str(i+1) + ' A = ' + str(sess.run(A)) + ' b = ' + str(sess.run(b))) print('Loss = ' + str(temp_loss)) print('\n') ### # Extract regression results ### # Get the optimal coefficients [slope] = sess.run(A) [y_intercept] = sess.run(b) # Get best fit line best_fit = [] for i in x_vals: best_fit.append(slope*i+y_intercept) ### # Plot results ### # Plot regression line against data points plt.plot(x_vals, y_vals, 'o', label='Data Points') plt.plot(x_vals, best_fit, 'r-', label='Best fit line', linewidth=3) plt.legend(loc='upper left') plt.title('Sepal Length vs Pedal Width') plt.xlabel('Pedal Width') plt.ylabel('Sepal Length') plt.show() # Plot loss over time plt.plot(loss_vec, 'k-') plt.title(regression_type + ' Loss per Generation') plt.xlabel('Generation') plt.ylabel('Loss') plt.show()
输出结果:
Step #300 A = [[ 0.77170753]] b = [[ 1.82499862]]
Loss = [[ 10.26473045]]
Step #600 A = [[ 0.75908542]] b = [[ 3.2220633]]
Loss = [[ 3.06292033]]
Step #900 A = [[ 0.74843585]] b = [[ 3.9975822]]
Loss = [[ 1.23220456]]
Step #1200 A = [[ 0.73752165]] b = [[ 4.42974091]]
Loss = [[ 0.57872057]]
Step #1500 A = [[ 0.72942668]] b = [[ 4.67253113]]
Loss = [[ 0.40874988]]
通过在标准线性回归估计的基础上,增加一个连续的阶跃函数,实现lasso回归算法。由于阶跃函数的坡度,我们需要注意步长,因为太大的步长会导致最终不收敛。
相关推荐:
以上就是用TensorFlow实现lasso回归和岭回归算法的示例的详细内容,更多请关注其它相关文章!