欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页  >  IT编程

pytorch实现线性回归以及多元回归

程序员文章站 2022-03-16 11:16:27
本文实例为大家分享了pytorch实现线性回归以及多元回归的具体代码,供大家参考,具体内容如下最近在学习pytorch,现在把学习的代码放在这里,下面是github链接直接附上# 实现一个线性回归#...

本文实例为大家分享了pytorch实现线性回归以及多元回归的具体代码,供大家参考,具体内容如下

最近在学习pytorch,现在把学习的代码放在这里,下面是github链接

直接附上

# 实现一个线性回归
# 所有的层结构和损失函数都来自于 torch.nn
# torch.optim 是一个实现各种优化算法的包,调用的时候必须是需要优化的参数传入,这些参数都必须是variable
 
x_train = np.array([[3.3],[4.4],[5.5],[6.71],[6.93],[4.168],[9.779],[6.182],[7.59],[2.167],[7.042],[10.791],[5.313],[7.997],[3.1]],dtype=np.float32)
y_train = np.array([[1.7],[2.76],[2.09],[3.19],[1.694],[1.573],[3.366],[2.596],[2.53],[1.221],[2.827],[3.465],[1.65],[2.904],[1.3]],dtype=np.float32)
 
# 首先我们需要将array转化成tensor,因为pytorch处理的单元是tensor
 
x_train = torch.from_numpy(x_train)
y_train = torch.from_numpy(y_train)
 
 
# def a simple network
 
class linearregression(nn.module):
    def __init__(self):
        super(linearregression,self).__init__()
        self.linear = nn.linear(1, 1)  # input and output is 2_dimension
    def forward(self, x):
        out = self.linear(x)
        return out
 
 
if torch.cuda.is_available():
    model = linearregression().cuda()
    #model = model.cuda()
else:
    model = linearregression()
    #model = model.cuda()
 
# 定义loss function 和 optimize func
criterion = nn.mseloss()   # 均方误差作为优化函数
optimizer = torch.optim.sgd(model.parameters(),lr=1e-3)
num_epochs = 30000
for epoch in range(num_epochs):
    if torch.cuda.is_available():
        inputs = variable(x_train).cuda()
        outputs = variable(y_train).cuda()
    else:
        inputs = variable(x_train)
        outputs = variable(y_train)
 
    # forward
    out = model(inputs)
    loss = criterion(out,outputs)
 
    # backword
    optimizer.zero_grad()  # 每次做反向传播之前都要进行归零梯度。不然梯度会累加在一起,造成不收敛的结果
    loss.backward()
    optimizer.step()
 
    if (epoch +1)%20==0:
        print('epoch[{}/{}], loss: {:.6f}'.format(epoch+1,num_epochs,loss.data))
 
 
model.eval()  # 将模型变成测试模式
predict = model(variable(x_train).cuda())
predict = predict.data.cpu().numpy()
plt.plot(x_train.numpy(),y_train.numpy(),'ro',label = 'original data')
plt.plot(x_train.numpy(),predict,label = 'fitting line')
plt.show()

结果如图所示:

pytorch实现线性回归以及多元回归

多元回归:

# _*_encoding=utf-8_*_
# pytorch 里面最基本的操作对象是tensor,pytorch 的tensor可以和numpy的ndarray相互转化。
# 实现一个线性回归
# 所有的层结构和损失函数都来自于 torch.nn
# torch.optim 是一个实现各种优化算法的包,调用的时候必须是需要优化的参数传入,这些参数都必须是variable
 
 
# 实现 y = b + w1 *x + w2 *x**2 +w3*x**3
import os
os.environ['cuda_device_order']="pci_bus_id"
os.environ['cuda_visible_devices']='0'
import torch
import numpy as np
from torch.autograd import variable
import matplotlib.pyplot as plt
from torch import nn
 
 
# pre_processing
def make_feature(x):
    x = x.unsqueeze(1)   # unsquenze 是为了添加维度1的,0表示第一维度,1表示第二维度,将tensor大小由3变为(3,1)
    return torch.cat([x ** i for i in range(1, 4)], 1)
 
# 定义好真实的数据
 
 
def f(x):
    w_output = torch.tensor([0.5, 3, 2.4]).unsqueeze(1)
    b_output = torch.tensor([0.9])
    return x.mm(w_output)+b_output[0]  # 外积,矩阵乘法
 
 
# 批量处理数据
def get_batch(batch_size =32):
 
    random = torch.randn(batch_size)
    x = make_feature(random)
    y = f(x)
    if torch.cuda.is_available():
 
        return variable(x).cuda(),variable(y).cuda()
    else:
        return variable(x),variable(y)
 
 
 
# def model
class poly_model(nn.module):
    def __init__(self):
        super(poly_model,self).__init__()
        self.poly = nn.linear(3,1)
    def forward(self,input):
        output = self.poly(input)
        return output
 
if torch.cuda.is_available():
    print("sdf")
    model = poly_model().cuda()
else:
    model = poly_model()
 
 
# 定义损失函数和优化器
criterion = nn.mseloss()
optimizer = torch.optim.sgd(model.parameters(), lr=1e-3)
 
epoch = 0
while true:
    batch_x, batch_y = get_batch()
    #print(batch_x)
    output = model(batch_x)
    loss = criterion(output,batch_y)
    print_loss = loss.data
    optimizer.zero_grad()
    loss.backward()
    optimizer.step()
    epoch = epoch +1
    if print_loss < 1e-3:
        print(print_loss)
        break
 
model.eval()
print("epoch = {}".format(epoch))
 
batch_x, batch_y = get_batch()
predict = model(batch_x)
a = predict - batch_y
y = torch.sum(a)
print('y = ',y)
predict = predict.data.cpu().numpy()
plt.plot(batch_x.cpu().numpy(),batch_y.cpu().numpy(),'ro',label = 'original data')
plt.plot(batch_x.cpu().numpy(),predict,'b', ls='--',label = 'fitting line')
plt.show()

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。