欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

2020 CCPC Wannafly Winter Camp Day1 F 乘法(二分)

程序员文章站 2022-07-15 16:10:11
...

2020 CCPC Wannafly Winter Camp Day1 F 乘法(二分)

题意:

给定长度为 nn 的序列 AA 和长度为 mm 的序列 BB,序列 AA 的第 i(1in)i \left(1\leq i\leq n\right)项为 AiA_i序列 BB 的第 i(1im)i \left(1\leq i\leq m\right)项为 BiB_i

构造 n×mn\times m 的矩阵 CC ,第 i(1in)i \left(1\leq i\leq n\right) 行第 i(1im)i \left(1\leq i\leq m\right) 列的元素 Ci,j=AiBjC_{i,j}=A_i\cdot B_j
给定整数 KK ,求矩阵 CC 中第 KK 大的元素。

问题等价于求最大的数 ansans ,使得 CC 中大于或等于 ansans 的元素数目大于或等于 KK .
对序列 A,BA,B 按符号划分后再排序,二分答案即可。

ccCi,jC_{i,j}同阶。

AC代码:

#include <cstdio>
#include <vector>
#include <queue>
#include <cstring>
#include <cmath>
#include <map>
#include <set>
#include <string>
#include <iostream>
#include <algorithm>
#include <iomanip>
#include <stack>
#include <queue>
using namespace std;
#define sd(n) scanf("%d", &n)
#define sdd(n, m) scanf("%d%d", &n, &m)
#define sddd(n, m, k) scanf("%d%d%d", &n, &m, &k)
#define pd(n) printf("%d\n", n)
#define pc(n) printf("%c", n)
#define pdd(n, m) printf("%d %d\n", n, m)
#define pld(n) printf("%lld\n", n)
#define pldd(n, m) printf("%lld %lld\n", n, m)
#define sld(n) scanf("%lld", &n)
#define sldd(n, m) scanf("%lld%lld", &n, &m)
#define slddd(n, m, k) scanf("%lld%lld%lld", &n, &m, &k)
#define sf(n) scanf("%lf", &n)
#define sc(n) scanf("%c", &n)
#define sff(n, m) scanf("%lf%lf", &n, &m)
#define sfff(n, m, k) scanf("%lf%lf%lf", &n, &m, &k)
#define ss(str) scanf("%s", str)
#define rep(i, a, n) for (int i = a; i <= n; i++)
#define per(i, a, n) for (int i = n; i >= a; i--)
#define mem(a, n) memset(a, n, sizeof(a))
#define debug(x) cout << #x << ": " << x << endl
#define pb push_back
#define all(x) (x).begin(), (x).end()
#define fi first
#define se second
#define mod(x) ((x) % MOD)
#define gcd(a, b) __gcd(a, b)
#define lowbit(x) (x & -x)
typedef pair<int, int> PII;
typedef long long ll;
typedef unsigned long long ull;
typedef long double ld;
const int MOD = 1e9 + 7;
const double eps = 1e-9;
inline int read()
{
    int ret = 0, sgn = 1;
    char ch = getchar();
    while (ch < '0' || ch > '9')
    {
        if (ch == '-')
            sgn = -1;
        ch = getchar();
    }
    while (ch >= '0' && ch <= '9')
    {
        ret = ret * 10 + ch - '0';
        ch = getchar();
    }
    return ret * sgn;
}
inline void Out(int a) //Êä³öÍâ¹Ò
{
    if (a > 9)
        Out(a / 10);
    putchar(a % 10 + '0');
}

ll gcd(ll a, ll b)
{
    return b == 0 ? a : gcd(b, a % b);
}

ll lcm(ll a, ll b)
{
    return a * b / gcd(a, b);
}
///快速幂m^k%mod
ll qpow(ll a, ll b, ll mod)
{
    if (a >= mod)
        a = a % mod + mod;
    ll ans = 1;
    while (b)
    {
        if (b & 1)
        {
            ans = ans * a;
            if (ans >= mod)
                ans = ans % mod + mod;
        }
        a *= a;
        if (a >= mod)
            a = a % mod + mod;
        b >>= 1;
    }
    return ans;
}

// 快速幂求逆元
int Fermat(int a, int p) //费马求a关于b的逆元
{
    return qpow(a, p - 2, p);
}

///扩展欧几里得
ll exgcd(ll a, ll b, ll &x, ll &y)
{
    if (b == 0)
    {
        x = 1;
        y = 0;
        return a;
    }
    ll g = exgcd(b, a % b, x, y);
    ll t = x;
    x = y;
    y = t - a / b * y;
    return g;
}

const int maxn = 1e5 + 5;

ll a[maxn], b[maxn];
ll n, m, k;

bool check(ll mid)
{
    ll num = 0;
    for (int i = 1; i <= m; i++)
    {
        if (b[i] == 0)
            num += mid < 0 ? n : 0;
        if (b[i] < 0)
            num += lower_bound(a + 1, a + n + 1, ceil((double)mid / b[i])) - (a + 1);
        if (b[i] > 0)
            num += n - ((upper_bound(a + 1, a + n + 1, floor((double)mid / b[i]))) - (a + 1));
    }
    return num <= k;
}

int main()
{
    slddd(n, m, k);
    k--;
    rep(i, 1, n)
        sld(a[i]);
    rep(i, 1, m)
        sld(b[i]);
    sort(a + 1, a + n + 1);
    sort(b + 1, b + m + 1);
    ll l = -1e13, r = 1e13;
    while (l + 1 < r)
    {
        ll mid = (l + r) >> 1;
        if (check(mid))
            r = mid;
        else
            l = mid;
    }
    pld(r);
    return 0;
}

相关标签: 二分