Open3d学习计划——高级篇 6(体素化)
Open3d学习计划——高级篇 6(体素化)
点云和三角网格是一种十分灵活的,但是不规则的几何类型。体素网格是通过规则的3D网格来表示的另一种3D几何类型,并且它可以看作是2D像素在3D上的对照物。Open3d中的VoxelGrid
几何类型能够被用来处理体素网格数据。
从三角网格中生成
Open3d提供了create_from_triangle_mesh
函数能够从三角网格中生成体素网格。它返回一个体素网格,其中所有与三角形相交的网格被设置为1,其余的设置为0。其中voxel_zie
参数是用来设置网格分辨率。
print('input')
mesh = o3dtut.get_bunny_mesh()
# fit to unit cube
mesh.scale(1 / np.max(mesh.get_max_bound() - mesh.get_min_bound()), center=mesh.get_center())
o3d.visualization.draw_geometries([mesh])
print('voxelization')
voxel_grid = o3d.geometry.VoxelGrid.create_from_triangle_mesh(mesh,
voxel_size=0.05)
o3d.visualization.draw_geometries([voxel_grid])
input
voxelization
从点云中生成
也能够使用create_from_point_cloud
函数从点云中生成体素网格。如果点云中至少有一个点在体素网格内,则该网格被占用。颜色表示的是该体素中点的平均值。参数voxel_size
用来定义网格分辨率。
print('input')
N = 2000
pcd = o3dtut.get_armadillo_mesh().sample_points_poisson_disk(N)
# fit to unit cube
pcd.scale(1 / np.max(pcd.get_max_bound() - pcd.get_min_bound()), center=pcd.get_center())
pcd.colors = o3d.utility.Vector3dVector(np.random.uniform(0,1,size=(N,3)))
o3d.visualization.draw_geometries([pcd])
print('voxelization')
voxel_grid = o3d.geometry.VoxelGrid.create_from_point_cloud(pcd,
voxel_size=0.05)
o3d.visualization.draw_geometries([voxel_grid])
input
voxelization
包含测试
体素网格也能够用来测试点是否在被占用的网格内。方法check_if_included
接受一个(n,3)
数组作为输入,返回一个bool
类型的数组。
queries = np.asarray(pcd.points)
output = voxel_grid.check_if_included(o3d.utility.Vector3dVector(queries))
print(output[:10])
[True, True, True, True, True, True, True, True, True, True]
体素雕刻
方法create_from_point_cloud
和create_from_triangle_mesh
只能够在几何体的表面创造体素网格。然而从大量的深度图或者轮廓中雕刻一个体素网格是有可能的。Open3d提供了carve_depth_map
和 carve_silhouette
方法用于体素雕刻。
下面的代码展示了使用方法,首先从一个几何形状中得到 depthmaps ,之后使用 depthmaps 去雕刻出稠密的体素网格。最后的结果是一个给定形状的填充的体素网格。
def xyz_spherical(xyz):
x = xyz[0]
y = xyz[1]
z = xyz[2]
r = np.sqrt(x * x + y * y + z * z)
r_x = np.arccos(y / r)
r_y = np.arctan2(z, x)
return [r, r_x, r_y]
def get_rotation_matrix(r_x, r_y):
rot_x = np.asarray([[1, 0, 0], [0, np.cos(r_x), -np.sin(r_x)],
[0, np.sin(r_x), np.cos(r_x)]])
rot_y = np.asarray([[np.cos(r_y), 0, np.sin(r_y)], [0, 1, 0],
[-np.sin(r_y), 0, np.cos(r_y)]])
return rot_y.dot(rot_x)
def get_extrinsic(xyz):
rvec = xyz_spherical(xyz)
r = get_rotation_matrix(rvec[1], rvec[2])
t = np.asarray([0, 0, 2]).transpose()
trans = np.eye(4)
trans[:3, :3] = r
trans[:3, 3] = t
return trans
def preprocess(model):
min_bound = model.get_min_bound()
max_bound = model.get_max_bound()
center = min_bound + (max_bound - min_bound) / 2.0
scale = np.linalg.norm(max_bound - min_bound) / 2.0
vertices = np.asarray(model.vertices)
vertices -= center
model.vertices = o3d.utility.Vector3dVector(vertices / scale)
return model
def voxel_carving(mesh,
output_filename,
camera_path,
cubic_size,
voxel_resolution,
w=300,
h=300,
use_depth=True,
surface_method='pointcloud'):
mesh.compute_vertex_normals()
camera_sphere = o3d.io.read_triangle_mesh(camera_path)
# setup dense voxel grid
voxel_carving = o3d.geometry.VoxelGrid.create_dense(
width=cubic_size,
height=cubic_size,
depth=cubic_size,
voxel_size=cubic_size / voxel_resolution,
origin=[-cubic_size / 2.0, -cubic_size / 2.0, -cubic_size / 2.0])
# rescale geometry
camera_sphere = preprocess(camera_sphere)
mesh = preprocess(mesh)
# setup visualizer to render depthmaps
vis = o3d.visualization.Visualizer()
vis.create_window(width=w, height=h, visible=False)
vis.add_geometry(mesh)
vis.get_render_option().mesh_show_back_face = True
ctr = vis.get_view_control()
param = ctr.convert_to_pinhole_camera_parameters()
# carve voxel grid
pcd_agg = o3d.geometry.PointCloud()
centers_pts = np.zeros((len(camera_sphere.vertices), 3))
for cid, xyz in enumerate(camera_sphere.vertices):
# get new camera pose
trans = get_extrinsic(xyz)
param.extrinsic = trans
c = np.linalg.inv(trans).dot(np.asarray([0, 0, 0, 1]).transpose())
centers_pts[cid, :] = c[:3]
ctr.convert_from_pinhole_camera_parameters(param)
# capture depth image and make a point cloud
vis.poll_events()
vis.update_renderer()
depth = vis.capture_depth_float_buffer(False)
pcd_agg += o3d.geometry.PointCloud.create_from_depth_image(
o3d.geometry.Image(depth),
param.intrinsic,
param.extrinsic,
depth_scale=1)
# depth map carving method
if use_depth:
voxel_carving.carve_depth_map(o3d.geometry.Image(depth), param)
else:
voxel_carving.carve_silhouette(o3d.geometry.Image(depth), param)
print("Carve view %03d/%03d" % (cid + 1, len(camera_sphere.vertices)))
vis.destroy_window()
# add voxel grid survace
print('Surface voxel grid from %s' % surface_method)
if surface_method == 'pointcloud':
voxel_surface = o3d.geometry.VoxelGrid.create_from_point_cloud_within_bounds(
pcd_agg,
voxel_size=cubic_size / voxel_resolution,
min_bound=(-cubic_size / 2, -cubic_size / 2, -cubic_size / 2),
max_bound=(cubic_size / 2, cubic_size / 2, cubic_size / 2))
elif surface_method == 'mesh':
voxel_surface = o3d.geometry.VoxelGrid.create_from_triangle_mesh_within_bounds(
mesh,
voxel_size=cubic_size / voxel_resolution,
min_bound=(-cubic_size / 2, -cubic_size / 2, -cubic_size / 2),
max_bound=(cubic_size / 2, cubic_size / 2, cubic_size / 2))
else:
raise Exception('invalid surface method')
voxel_carving_surface = voxel_surface + voxel_carving
return voxel_carving_surface, voxel_carving, voxel_surface
mesh = o3dtut.get_armadillo_mesh()
output_filename = os.path.abspath("../../TestData/voxelized.ply")
camera_path = os.path.abspath("../../TestData/sphere.ply")
visualization = True
cubic_size = 2.0
voxel_resolution = 128.0
voxel_grid, voxel_carving, voxel_surface = voxel_carving(
mesh, output_filename, camera_path,
cubic_size, voxel_resolution)
Carve view 001/642
Carve view 002/642
Carve view 003/642
Carve view 004/642
…
Carve view 642/642
Surface voxel grid from pointcloud
print("surface voxels")
print(voxel_surface)
o3d.visualization.draw_geometries([voxel_surface])
print("carved voxels")
print(voxel_carving)
o3d.visualization.draw_geometries([voxel_carving])
print("combined voxels (carved + surface)")
print(voxel_grid)
o3d.visualization.draw_geometries([voxel_grid])
surface voxels
geometry::VoxelGrid with 17215 voxels.
carved voxels
geometry::VoxelGrid with 48370 voxels.
combined voxels (carved + surface)
geometry::VoxelGrid with 50786 voxels.
上一篇: c++ protected误区
下一篇: l1和l2正则化