欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

Open3d学习计划——高级篇 3(点云全局配准)

程序员文章站 2022-07-13 09:54:37
...

Open3d学习计划——高级篇 3(点云全局配准)

ICP配准彩色点云配准都被称为局部点云配准方法,因为他们都依赖一个粗糙的对齐作为初始化。本篇教程将会展现另一种被称为全局配准的配准方法.这种系列的算法不要求一个初始化的对齐,通常会输出一个没那么精准的对齐结果,并且使用该结果作为局部配准的初始化.

可视化

该辅助函数可以将配准的源点云和目标点云一起可视化.

def draw_registration_result(source, target, transformation):
    source_temp = copy.deepcopy(source)
    target_temp = copy.deepcopy(target)
    source_temp.paint_uniform_color([1, 0.706, 0])
    target_temp.paint_uniform_color([0, 0.651, 0.929])
    source_temp.transform(transformation)
    o3d.visualization.draw_geometries([source_temp, target_temp])

注意:这里原来的教程里可视化函数都加了初始视角之类的,但是很多人反映这个会报错,并且官方函数里也没给出可接受的参数,所以在这里把初始视角的参数都去掉了

提取几何特征

我们降采样点云,估计法线,之后对每个点计算FPFH特征.FPFH特征是一个描述点的局部几何属性的33维的向量.在33维空间中进行最近邻查询可以返回具有近似几何结构的点.详细细节请查看 [Rasu2009].

def preprocess_point_cloud(pcd, voxel_size):
    print(":: Downsample with a voxel size %.3f." % voxel_size)
    pcd_down = pcd.voxel_down_sample(voxel_size)

    radius_normal = voxel_size * 2
    print(":: Estimate normal with search radius %.3f." % radius_normal)
    pcd_down.estimate_normals(
        o3d.geometry.KDTreeSearchParamHybrid(radius=radius_normal, max_nn=30))

    radius_feature = voxel_size * 5
    print(":: Compute FPFH feature with search radius %.3f." % radius_feature)
    pcd_fpfh = o3d.registration.compute_fpfh_feature(
        pcd_down,
        o3d.geometry.KDTreeSearchParamHybrid(radius=radius_feature, max_nn=100))
    return pcd_down, pcd_fpfh

输入

以下代码从两个文件中读取源点云和目标点云.这一对点云使用单位矩阵作为初始矩阵之后是不对齐的.


def prepare_dataset(voxel_size):
    print(":: Load two point clouds and disturb initial pose.")
    source = o3d.io.read_point_cloud("../../TestData/ICP/cloud_bin_0.pcd")
    target = o3d.io.read_point_cloud("../../TestData/ICP/cloud_bin_1.pcd")
    trans_init = np.asarray([[0.0, 0.0, 1.0, 0.0], [1.0, 0.0, 0.0, 0.0],
                             [0.0, 1.0, 0.0, 0.0], [0.0, 0.0, 0.0, 1.0]])
    source.transform(trans_init)
    draw_registration_result(source, target, np.identity(4))

    source_down, source_fpfh = preprocess_point_cloud(source, voxel_size)
    target_down, target_fpfh = preprocess_point_cloud(target, voxel_size)
    return source, target, source_down, target_down, source_fpfh, target_fpfh
voxel_size = 0.05 # means 5cm for this dataset
source, target, source_down, target_down, source_fpfh, target_fpfh = prepare_dataset(voxel_size)

:: Load two point clouds and disturb initial pose.
:: Downsample with a voxel size 0.050.
:: Estimate normal with search radius 0.100.
:: Compute FPFH feature with search radius 0.250.
:: Downsample with a voxel size 0.050.
:: Estimate normal with search radius 0.100.
:: Compute FPFH feature with search radius 0.250.
Open3d学习计划——高级篇 3(点云全局配准)

RANSAC

我们使用RANSAC进行全局配准.在RANSAC迭代中,我们每次从源点云中选取 ransac_n 个随机点.通过在33维FPFH特征空间中查询最邻近,可以在目标点云中找到他们的对应点.剪枝步骤需要使用快速修剪算法来提早拒绝错误匹配.
Open3d提供以下剪枝算法:

  • CorrespondenceCheckerBasedOnDistance检查对应的点云是否接近(也就是距离是否小于指定阈值)
  • CorrespondenceCheckerBasedOnEdgeLength检查从源点云和目标点云对应中分别画上两条任意边(两个顶点连成的线)是否近似.本教程检验的是 ∣ ∣ e d g e s o u r c e ∣ ∣ > 0.9 ∗ ∣ ∣ e d g e t a r g e t ∣ ∣ ||edge_{source}|| > 0.9 * ||edge_{target}|| edgesource>0.9edgetarget 0.9 ∗ ∣ ∣ e d g e s o u r c e ∣ ∣ < ∣ ∣ e d g e t a r g e t ∣ ∣ 0.9*||edge_{source}|| < ||edge_{target}|| 0.9edgesource<edgetarget 是真.
  • CorrespondenceCheckerBasedOnNormal考虑的所有的对应的顶点法线的密切关系.他计算了两个法线向量的点积.使用弧度作为阈值.

只有通过剪枝步骤的匹配才用于转换,该转换将在整个点云上进行验证.
核心函数是 registration_ransac_based_on_feature_matching. RANSACConvergenceCriteria是里面一个十分重要的超参数.他定义了RANSAC迭代的最大次数和验证的最大次数.这两个值越大,那么结果越准确,但同时也要花费更多的时间.
我们是基于[Choi2015]提供的的经验来设置RANSAC的超参数.

def execute_global_registration(source_down, target_down, source_fpfh,
                               target_fpfh, voxel_size):
   distance_threshold = voxel_size * 1.5
   print(":: RANSAC registration on downsampled point clouds.")
   print("   Since the downsampling voxel size is %.3f," % voxel_size)
   print("   we use a liberal distance threshold %.3f." % distance_threshold)
   result = o3d.registration.registration_ransac_based_on_feature_matching(
       source_down, target_down, source_fpfh, target_fpfh, distance_threshold,
       o3d.registration.TransformationEstimationPointToPoint(False), 4, [
           o3d.registration.CorrespondenceCheckerBasedOnEdgeLength(0.9),
           o3d.registration.CorrespondenceCheckerBasedOnDistance(
               distance_threshold)
       ], o3d.registration.RANSACConvergenceCriteria(4000000, 500))
   return result
result_ransac = execute_global_registration(source_down, target_down,
                                           source_fpfh, target_fpfh,
                                           voxel_size)
print(result_ransac)
draw_registration_result(source_down, target_down, result_ransac.transformation)

:: RANSAC registration on downsampled point clouds.
Since the downsampling voxel size is 0.050,
we use a liberal distance threshold 0.075.
registration::RegistrationResult with fitness=6.773109e-01, inlier_rmse=3.332039e-02, and correspondence_set size of 3224
Access transformation to get result.
Open3d学习计划——高级篇 3(点云全局配准)

局部优化

由于性能原因,全局配准只能在大规模降采样的点云上执行,配准的结果不够精细,我们使用 Point-to-plane ICP 去进一步优化配准结果.


def refine_registration(source, target, source_fpfh, target_fpfh, voxel_size):
    distance_threshold = voxel_size * 0.4
    print(":: Point-to-plane ICP registration is applied on original point")
    print("   clouds to refine the alignment. This time we use a strict")
    print("   distance threshold %.3f." % distance_threshold)
    result = o3d.registration.registration_icp(
        source, target, distance_threshold, result_ransac.transformation,
        o3d.registration.TransformationEstimationPointToPlane())
    return result
result_icp = refine_registration(source, target, source_fpfh, target_fpfh,
                                 voxel_size)
print(result_icp)
draw_registration_result(source, target, result_icp.transformation)

:: Point-to-plane ICP registration is applied on original point
clouds to refine the alignment. This time we use a strict
distance threshold 0.020.
registration::RegistrationResult with fitness=6.210275e-01, inlier_rmse=6.565175e-03, and correspondence_set size of 123482
Access transformation to get result.

Open3d学习计划——高级篇 3(点云全局配准)

快速全局配准

由于无数的模型推荐和评估,导致基于RANSAC的全局配准需要很长的时间.
[Zhou2016] 提出了一种加速的方法,该方法可以快速的优化几乎没有对应关系的线处理权重( [Zhou2016] introduced a faster approach that quickly optimizes line process weights of few correspondences).这样在每次迭代的时候没有模型建议和评估,该方法就在计算的时候节约的大量的时间.(建议看看原论文,这个感觉翻译不好,有更好建议的欢迎留言.)
这篇教程比较了基于RANSAC的全局配准和[Zhou2016]方法的运行时间.

输入

我们使用上面全局配准的输入例子.

voxel_size = 0.05  # means 5cm for the dataset
source, target, source_down, target_down, source_fpfh, target_fpfh = \
        prepare_dataset(voxel_size)

:: Load two point clouds and disturb initial pose.
:: Downsample with a voxel size 0.050.
:: Estimate normal with search radius 0.100.
:: Compute FPFH feature with search radius 0.250.
:: Downsample with a voxel size 0.050.
:: Estimate normal with search radius 0.100.
:: Compute FPFH feature with search radius 0.250.

Open3d学习计划——高级篇 3(点云全局配准)

基准

在下面代码中,我们将计时全局配准算法.


start = time.time()
result_ransac = execute_global_registration(source_down, target_down,
                                            source_fpfh, target_fpfh,
                                            voxel_size)
print("Global registration took %.3f sec.\n" % (time.time() - start))
print(result_ransac)
draw_registration_result(source_down, target_down,
                         result_ransac.transformation)

:: RANSAC registration on downsampled point clouds.
Since the downsampling voxel size is 0.050,
we use a liberal distance threshold 0.075.
Global registration took 0.085 sec.
registration::RegistrationResult with fitness=6.760504e-01, inlier_rmse=2.596653e-02, and correspondence_set size of 3218
Access transformation to get result.

Open3d学习计划——高级篇 3(点云全局配准)

快速全局配准

我们采用和基准相同的输入,下面的代码调用了了[Zhou2016]的实现.

def execute_fast_global_registration(source_down, target_down, source_fpfh,
                                     target_fpfh, voxel_size):
    distance_threshold = voxel_size * 0.5
    print(":: Apply fast global registration with distance threshold %.3f" \
            % distance_threshold)
    result = o3d.registration.registration_fast_based_on_feature_matching(
        source_down, target_down, source_fpfh, target_fpfh,
        o3d.registration.FastGlobalRegistrationOption(
            maximum_correspondence_distance=distance_threshold))
    return result
start = time.time()
result_fast = execute_fast_global_registration(source_down, target_down,
                                               source_fpfh, target_fpfh,
                                               voxel_size)
print("Fast global registration took %.3f sec.\n" % (time.time() - start))
print(result_fast)
draw_registration_result(source_down, target_down,
                         result_fast.transformation)

:: Apply fast global registration with distance threshold 0.025
Fast global registration took 0.128 sec.
registration::RegistrationResult with fitness=5.054622e-01, inlier_rmse=1.743545e-02, and correspondence_set size of 2406
Access transformation to get result.

Open3d学习计划——高级篇 3(点云全局配准)
经过适当的配置,快速全局配准的精度甚至可以和ICP相媲美.更多实验结果请参阅[Zhou2016].

关于翻译大家有更好的意见欢迎评论一起学习!!!

欢迎大家关注“点云PCL”公众号,进入群聊一起学习。

Open3d学习计划——高级篇 3(点云全局配准)

相关标签: open3d python