欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

线性代数矩阵行列式_矩阵的行列式 使用Python的线性代数

程序员文章站 2022-07-12 13:59:53
...

线性代数矩阵行列式

In linear algebra, the determinant is a scalar value that can be computed for a square matrix and represents certain properties of the matrix. The determinant of a matrix A is denoted det(A) or det A or |A|. Python library numpy provides a wide range of functions that can be used to manipulate matrices. One of such functions is numpy.linalg.det(A), which allows us to directly return the value of the determinant of a matrix A.

在线性代数中, 行列式是可以为方矩阵计算的标量值,代表矩阵的某些属性。 矩阵A的行列式表示为det(A)det A| A |。 。 Python库numpy提供了广泛的函数,可用于处理矩阵。 numpy.linalg.det(A)是此类函数之一 ,它使我们可以直接返回矩阵A的行列式的值。

Following is a python code for demonstrating how to use numpy.linalg.det(A)

以下是用于演示如何使用numpy.linalg.det(A)的python代码

用于演示如何使用numpy.linalg.det(A)的Python代码? (Python code for demonstrating how to use numpy.linalg.det(A)?)

# Linear Algebra Learning Sequence
# Finding determinant

import numpy as np 

M = np.array([[2,3,4], [3,45,8], [4,8,78]])
print("---Matrix A---\n", M)

det_A = np.linalg.det(M)

print("The determinant of matrix A : ", det_A)

M = np.array([[2,3,4], [3,14,8], [14,8,7]])
print("\n\n---Matrix B---\n", M)

det_B = np.linalg.det(M)

print("The determinant of matrix B : ", det_B)

Output:

输出:

---Matrix A---
 [[ 2  3  4]
 [ 3 45  8]
 [ 4  8 78]]
The determinant of matrix A :  5661.9999999999945


---Matrix B---
 [[ 2  3  4]
 [ 3 14  8]
 [14  8  7]]
The determinant of matrix B :  -347.00000000000006


翻译自: https://www.includehelp.com/python/determinant-of-a-matrix.aspx

线性代数矩阵行列式