欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

线性代数行列式 和矩阵_零和一矩阵的行列式| 使用Python的线性代数

程序员文章站 2022-07-12 14:00:17
...

线性代数行列式 和矩阵

Prerequisites:

先决条件:

In linear algebra, the determinant is a scalar value that can be computed for a square matrix and represents certain properties of the matrix. The determinant of a matrix A is denoted det(A) or det A or |A|. There are matrices such as Zero and Ones matrices which have a constant determinant value and that is 0.

在线性代数中,行列式是可以为方矩阵计算的标量值,代表矩阵的某些属性。 矩阵A的行列式表示为det(A)det A| A |。 。 存在矩阵(例如零和一的矩阵)具有恒定的行列式值且为0。

Using python library function, we will find the determinant of various zero and ones matrices.

使用python库函数,我们将找到各种零和一矩阵的行列式

用于演示零和一矩阵行列式的Python代码 (Python code for demonstrating the determinant of a zeros and ones matrices)

# Linear Algebra Learning Sequence
# Determinant of a Zeros and Ones matrices

import numpy as np

oneM = np.ones([4,4])
det_oneM = np.linalg.det(oneM)
zeroM = np.zeros([4,4])
det_zeroM = np.linalg.det(zeroM)

print("Ones Matrix: \n", oneM, "\nDeterminant : ", det_oneM)
print("\n\nZeros Matrix: \n", zeroM, "\nDeterminant : ", det_zeroM)

Output:

输出:

Ones Matrix: 
 [[1. 1. 1. 1.]
 [1. 1. 1. 1.]
 [1. 1. 1. 1.]
 [1. 1. 1. 1.]] 
Determinant :  0.0


Zeros Matrix: 
 [[0. 0. 0. 0.]
 [0. 0. 0. 0.]
 [0. 0. 0. 0.]
 [0. 0. 0. 0.]] 
Determinant :  0.0


翻译自: https://www.includehelp.com/python/determinant-of-a-zeros-and-ones-matrices.aspx

线性代数行列式 和矩阵