欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

Pytorch专题实战——逻辑回归(Logistic Regression)

程序员文章站 2022-07-06 10:18:15
...

1.计算流程

 1)设计模型: Design model (input, output, forward pass with different layers)   
 2) 构建损失函数与优化器:Construct loss and optimizer
 3) 循环:Training loop
      - Forward = compute prediction and loss
      - Backward = compute gradients
       - Update weights

2.Pytorch搭建线性逻辑模型

2.1.导入必要模块

import torch
import torch.nn as nn
import numpy as np
from sklearn import datasets
from sklearn.preprocessing import StandardScaler   #数据标准化模块
from sklearn.model_selection import train_test_split

2.2.数据准备

bc = datasets.load_breast_cancer()      #加载数据集
X, y = bc.data, bc.target       #取数据和标签

n_samples, n_features = X.shape    #样本数量、特征数
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

sc = StandardScaler()
X_train = sc.fit_transform(X_train)    #求得训练集X的均值,方差,最大值,最小值并进行标准化
X_test = sc.transform(X_test)         #对标签标准化

#将数据转化为torch形式
X_train = torch.from_numpy(X_train.astype(np.float32))    
X_test = torch.from_numpy(X_test.astype(np.float32))
y_train = torch.from_numpy(y_train.astype(np.float32))
y_test = torch.from_numpy(y_test.astype(np.float32))

y_train = y_train.view(y_train.shape[0], 1)   #将标签多行1列
y_test = y_test.view(y_test.shape[0], 1)

2.3.构建模型

class Model(nn.Module):
    def __init__(self, n_input_features):
        super(Model, self).__init__()
        self.linear = nn.Linear(n_input_features, 1)
        
    def forward(self, x):
        y_pred = torch.sigmoid(self.linear(x))
        return y_pred

2.4.训练+计算准确率

model = Model(n_features)

num_epochs = 100
learning_rate = 0.01
criterion = nn.BCELoss()
optimizer = torch.optim.SGD(model.parameters(), lr=learning_rate)

for epoch in range(num_epochs):
    y_pred = model(X_train)
    loss = criterion(y_pred, y_train)
    loss.backward()
    optimizer.step()
    optimizer.zero_grad()
    if (epoch+1)%10 == 0:
        print(f'epoch:{epoch+1}, loss={loss.item():.4f}')
        
with torch.no_grad():
    y_predicted = model(X_test)
    y_predicted_cls = y_predicted.round()  #四舍五入
    acc = y_predicted_cls.eq(y_test).sum()/float(y_test.shape[0])
    print(f'accuracy:{acc.item():.4f}')

Pytorch专题实战——逻辑回归(Logistic Regression)