pytorch实战(一)-----逻辑回归
程序员文章站
2022-03-17 14:12:38
...
#-*-coding:utf-8-*-
import torch
import torch.nn as nn
import torch.optim as optim
from torch.autograd import Variable
import numpy as np
import matplotlib.pyplot as plt
with open("data.txt") as f:
data_list=f.readlines()
data_list=[i.split('\n')[0] for i in data_list]
data_list=[i.split(',') for i in data_list]
data=[(float(i[0]),float(i[1]),float(i[2])) for i in data_list]
x_data=[[i[0],i[1]] for i in data]
x_data=torch.from_numpy(np.array(x_data)).float()
y_data=[i[-1] for i in data]
y_data=torch.from_numpy(np.array(y_data)).float()
x0=list(filter(lambda x:x[-1]==0.0,data))
x1=list(filter(lambda x:x[-1]==1.0,data))
plot_x0_0=[i[0] for i in x0]
plot_x0_1=[i[1] for i in x0]
plot_x1_0=[i[0] for i in x1]
plot_x1_1=[i[1] for i in x1]
plt.plot(plot_x0_0,plot_x0_1,'ro',label='x_0')
plt.plot(plot_x1_0,plot_x1_1,'bo',label='x_1')
plt.legend(loc='best')
# plt.show()
class LogisticRegression(nn.Module):
def __init__(self):
super(LogisticRegression,self).__init__()
self.lr=nn.Linear(2,1)
self.sm=nn.Sigmoid()
def forward(self, x):
x=self.lr(x)
x=self.sm(x)
return x
logistic_model=LogisticRegression()
if torch.cuda.is_available():
logistic_model.cuda()
criterion=nn.BCELoss()
optimizer=optim.SGD(logistic_model.parameters(),lr=1e-3,momentum=0.9)
for epoch in range(50000):
if torch.cuda.is_available():
x=Variable(x_data).cuda()
y=Variable(y_data).cuda()
else:
x = Variable(x_data)
y = Variable(y_data)
out=logistic_model(x)
loss=criterion(out,y)
print_loss=loss.data[0]
mask=out.ge(0.5).float().squeeze()
correct= (mask==y).sum()
acc=correct.data[0].numpy()/x.size(0)
optimizer.zero_grad()
loss.backward()
optimizer.step()
if (epoch+1)%1000==0:
print('*'*10)
print('epoch {}'.format(epoch+1))
print('loss is {:.4f}'.format(print_loss))
print('acc is {:.4f}'.format(acc))
w0,w1=logistic_model.lr.weight[0]
w0=w0.data.numpy()
w1=w1.data.numpy()
b=logistic_model.lr.bias.data[0].numpy()
plot_x=np.arange(30,100,0.1)
plot_y=(-w0*plot_x-b)/w1
plt.plot(plot_x,plot_y)
plt.show()
上一篇: 明神宗三十年不上朝,怎么没人*呢?