欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

opencv3/C++ 机器学习-逻辑回归/Logistic Regression

程序员文章站 2022-07-14 14:38:22
...

逻辑回归/Logistic Regression

逻辑回归是一种与支持向量机(SVM)密切相关的二分类算法。与支持向量机一样,逻辑回归可以扩展为多类分类问题。OpenCV中逻辑回归支持二元和多类分类(创建了多个2类分类)。训练逻辑回归分类器可使用批量梯度下降法或小批量梯度下降法。 在OpenCV中逻辑回归通过cv::ml::LogisticRegression类实现。

在逻辑回归中,我们通过优化训练参数θ,使假设 0hθx1。我们有 hθx=ghθx gz=11+ez作为logistic 或sigmoid函数。 对于类别0和1的二元分类问题的给定数据,如果 hθx0.5 hθx<0.5,则可以确定给定数据实例属于类别1或0。

在cv::ml::LogisticRegression中,选择正确的参数对于减少训练误差和确保高训练精度至关重要。其中,迭代次数和学习率决定了到达一个可能的解决方案的速度,正则化用于补偿过度拟合。
学习率:学习率可以通过setLearningRate设置,决定了接近解决方案的速度。
迭代次数:优化算法的迭代次数可以通过setIterations设置,即所采取步骤的数量。
训练方法:训练方法通过setTrainMethod指定。逻辑回归提供的训练方法有:

 LogisticRegression::BATCH  //批量梯度下降法
 LogisticRegression::MINI_BATCH  //小批量梯度下降法

若训练方法设置为MINI_BATCH,则小批量的大小为setMiniBatchSize设置的正整数。

正则化:正则化类型可通过setRegularization设置。可选类型有:

LogisticRegression::REG_DISABLE  //此时禁用正规化
LogisticRegression::REG_L1   //L1正规化
LogisticRegression::REG_L2   //L2正规化

逻辑回归/Logistic Regression示例

opencv3.1.0例程logistic_regression.cpp:
逻辑回归(logistic regression)手写数字0和1分类

#include <iostream>
#include <opencv2/core.hpp>
#include <opencv2/ml.hpp>
#include <opencv2/highgui.hpp>

using namespace std;
using namespace cv;
using namespace cv::ml;

static void showImage(const Mat &data, int columns, const String &name)
{
    Mat bigImage;
    for(int i = 0; i < data.rows; ++i)
    {
        bigImage.push_back(data.row(i).reshape(0, columns));
    }
    imshow(name, bigImage.t());
}

static float calculateAccuracyPercent(const Mat &original, const Mat &predicted)
{
    return 100 * (float)countNonZero(original == predicted) / predicted.rows;
}

int main()
{
    const String filename = "E:/image/image/data/data01.xml";
    cout << "**********************************************************************" << endl;
    cout << filename
         << " contains digits 0 and 1 of 20 samples each, collected on an Android device" << endl;
    cout << "Each of the collected images are of size 28 x 28 re-arranged to 1 x 784 matrix"
         << endl;
    cout << "**********************************************************************" << endl;

    Mat data, labels;
    {
        cout << "loading the dataset...";
        FileStorage f;
        if(f.open(filename, FileStorage::READ))
        {
            f["datamat"] >> data;
            f["labelsmat"] >> labels;
            f.release();
        }
        else
        {
            cerr << "file can not be opened: " << filename << endl;
            return 1;
        }
        data.convertTo(data, CV_32F);
        labels.convertTo(labels, CV_32F);
        cout << "read " << data.rows << " rows of data" << endl;
    }

    Mat data_train, data_test;
    Mat labels_train, labels_test;
    for(int i = 0; i < data.rows; i++)
    {
        if(i % 2 == 0)
        {
            data_train.push_back(data.row(i));
            labels_train.push_back(labels.row(i));
        }
        else
        {
            data_test.push_back(data.row(i));
            labels_test.push_back(labels.row(i));
        }
    }
    cout << "training/testing samples count: " << data_train.rows << "/" << data_test.rows << endl;

    // 显示单个图像
    showImage(data_train, 28, "train data");
    showImage(data_test, 28, "test data");

    // 简单的情况与批梯度
    cout << "training...";
    // 创建模型
    Ptr<LogisticRegression> lr1 = LogisticRegression::create();
    // 学习率
    lr1->setLearningRate(0.001);
    // 迭代次数
    lr1->setIterations(10);
    // L2正则化
    lr1->setRegularization(LogisticRegression::REG_L2);
    // 训练方法
    lr1->setTrainMethod(LogisticRegression::BATCH);
    // 小批量的大小
    lr1->setMiniBatchSize(1);
    // 训练
    lr1->train(data_train, ROW_SAMPLE, labels_train);
    cout << "done!" << endl;
    // 预测
    cout << "predicting...";
    Mat responses;
    lr1->predict(data_test, responses);
    cout << "done!" << endl;

    // 显示预测报告
    cout << "original vs predicted:" << endl;
    labels_test.convertTo(labels_test, CV_32S);
    cout << labels_test.t() << endl;
    cout << responses.t() << endl;
    cout << "accuracy: " << calculateAccuracyPercent(labels_test, responses) << "%" << endl;

    // 保存分类器
    const String saveFilename = "NewLR_Trained.xml";
    cout << "saving the classifier to " << saveFilename << endl;
    lr1->save(saveFilename);

    // 将分类器加载到新对象上
    cout << "loading a new classifier from " << saveFilename << endl;
    Ptr<LogisticRegression> lr2 = StatModel::load<LogisticRegression>(saveFilename);

    // 预测使用加载的分类器
    cout << "predicting the dataset using the loaded classfier...";
    Mat responses2;
    lr2->predict(data_test, responses2);
    cout << "done!" << endl;

    // 计算准确度
    cout << labels_test.t() << endl;
    cout << responses2.t() << endl;
    cout << "accuracy: " << calculateAccuracyPercent(labels_test, responses2) << "%" << endl;

    waitKey(0);
    return 0;
}

opencv3/C++ 机器学习-逻辑回归/Logistic Regression