分布式任务队列--Celery的学习笔记
一、celery简介
celery是一个简单,灵活,可靠的分布式系统,用于处理大量消息,同时为操作提供维护此类系统所需的工具。它是一个任务队列,专注于实时处理,同时还支持任务调度。
所谓任务队列,是一个逻辑上的概念,可以将抽象中的任务发送到指定的执行任务的组件,任务队列可以跨线程或机器运行。
celery是基于python开发的分布式异步消息任务队列,通过它可以轻松的实现任务的异步处理, 如果你的业务场景中需要用到异步任务,就可以考虑使用celery。
二、celery使用场景
1.高并发的请求任务,比如需要发送大量请求的网络爬虫,就可以使用celery来加速爬取。
2.异步任务,将耗时的操作交给celery来完成,比如发送/接收邮件、消息推送等等。
3.定时任务,需要定时运行的程序,比如每天定时执行爬虫爬取数据。
三、celery架构
下图是我找到的一张表示celery架构的图:
任务生产者:产生任务并且把任务提交到任务队列的就是任务生产者。
任务调度beat:celery会根据配置文件对任务进行调配,可以按一定时间间隔周期性地执行某些任务。
中间人broker:celery使用消息进行通信,需要中间人在客户端和worker之间进行传递,接收客户端发送过来的任务,并将任务分配给worker。
在celery的文档中,可以找到官方给出的实现broker的工具有:
名称 | 状态 | 监控 | 远程控制 |
rabbitmq | 稳定 | 是 | 是 |
redis | 稳定 | 是 | 是 |
amazon sqs | 稳定 | 否 | 否 |
zookeeper | 实验性 | 否 | 否 |
消费者worker:worker是执行任务的单元,在celery任务队列中属于消费者。worker会不断地监听队列,一旦有任务添加进来,就会将任务取出来进行执行。worker还可以运行在多台机器上,只要它们都指向同一个broker就可以。
结果存储backend:结果存储backend,顾名思义就是将worker执行后得到的结果存储起来。celery中有几个内置的结果存储可供选择,包括sqlalchemy / django orm、redis、rabbitmq、mamcached等。
四、celery安装
celery4.0版本是支持python2.7的最后一个版本,所以如果你还在用py2的话,可能要选择安装celery3或者更早的版本。我本人用的python版本是python3.7,然后安装的celery版本是4.3。安装的话使用pip安装就好:
pip install celery
如果pip安装出错的话,可以去进行下载。在使用pip安装的时候会自动安装一些相关依赖,如果这些依赖安装出错的话,搜一下相应版本的wheel文件下载安装即可。
中间件broker我选择使用的是redis,这里就不说redis怎么安装了,上一篇博客中有ubuntu下安装redis的介绍。
五、celery使用示例
1.应用
在使用celery的时候,第一件事是要创建一个celery实例,一般称之为应用,简称为app。创建一个test.py,其中代码如下:
1 from celery import celery 2 3 4 app = celery("test", broker="redis://127.0.0.1:6379", backend="redis://127.0.0.1:6379") 5 6 7 @app.task 8 def add(x, y): 9 return x + y
2.运行celery服务器
在创建好应用之后,就可以使用celery命令执行程序运行worker了:
celery -a test worker -l info
运行后可以看到如下图:
有关可用命令行选项的完整列表,执行如下命令:
celery worker --help
3.调用任务
要调用任务,可以使用delay()方法。
该任务会返回一个asyncresult实例,可用于查询任务状态、获取任务返回值等。此时查看前面运行的服务器,会看到有如下信息:
received task: test.add[e7f01461-8c4d-4c29-ab6b-27be5084ecd9]
task test.add[e7f01461-8c4d-4c29-ab6b-27be5084ecd9] succeeded in 0.006505205000166825s: 5
4.查看结果
在前面定义的时候,已经选择使用redis作为结果后端了,所以任务执行后的结果会保存到redis中。而且,在调用任务的时候,还可以进行如下操作:
其中ready()方法会返回该任务是否已经执行,get()方法则会获取任务返回的结果。
5.配置文件
由于celery的配置信息比较多,因此一般会创建一个配置文件来保存这些配置信息,通常会命名为celeryconfig.py。在test.py所在文件夹下新建配置文件celeryconfig.py,其中的代码如下:
1 # broker(消息中间件来接收和发送任务消息) 2 broker_url = 'redis://127.0.0.1:6379' 3 # backend(存储worker执行的结果) 4 celery_result_backend = 'redis://127.0.0.1:6379' 5 6 # 设置时间参照,不设置默认使用的utc时间 7 celery_timezone = 'asia/shanghai' 8 # 指定任务的序列化 9 celery_task_serializer = 'json' 10 # 指定执行结果的序列化 11 celery_result_serializer = 'json'
然后修改下test.py中的代码:
1 from celery import celery 2 3 4 app = celery("test") 5 app.config_from_object("celerystudy.celeryconfig") 6 7 8 @app.task 9 def add(x, y): 10 return x + y
上一篇: 生煎和锅贴的区别