欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页  >  IT编程

洛谷P1586 四方定理

程序员文章站 2022-06-28 11:16:41
题目描述 四方定理是众所周知的:任意一个正整数nn ,可以分解为不超过四个整数的平方和。例如:25=1^{2}+2^{2}+2^{2}+4^{2}25=12+22+22+42 ,当然还有其他的分解方案,25=4^{2}+3^{2}25=42+32 和25=5^{2}25=52 。给定的正整数nn , ......

题目描述

四方定理是众所周知的:任意一个正整数nn ,可以分解为不超过四个整数的平方和。例如:25=1^{2}+2^{2}+2^{2}+4^{2}25=12+22+22+42 ,当然还有其他的分解方案,25=4^{2}+3^{2}25=42+32 和25=5^{2}25=52 。给定的正整数nn ,编程统计它能分解的方案总数。注意:25=4^{2}+3^{2}25=42+32 和25=3^{2}+4^{2}25=32+42 视为一种方案。

输入输出格式

输入格式:

 

第一行为正整数tt (t\le 100t100 ),接下来tt 行,每行一个正整数nn (n\le 32768n32768 )。

 

输出格式:

 

对于每个正整数nn ,输出方案总数。

 

输入输出样例

输入样例#1: 复制
1
2003
输出样例#1: 复制
48







$N^4$暴力可过
正解是背包$dp[i][j]$表示用$i$种平方数拼出$j$的方案数
// luogu-judger-enable-o2
#include<iostream>
#include<cstdio>
#define LL long long 
using namespace std;
const int MAXN=1e5+10;
int dp[5][MAXN];
int main()
{
    #ifdef WIN32
    freopen("a.in","r",stdin);
    #else
    #endif
    dp[0][0]=1;
    for(register int i=1;i<=200;i++)
        for(register int j=1;j<=4;j++)
            for(register int k=1;k<=32768;k++)
                if(i*i<=k)
                    dp[j][k]+=dp[j-1][k-i*i];
    int T;    
    scanf("%d",&T);
    while(T--)
    {
        int a;
        scanf("%d",&a);
        printf("%d\n",dp[1][a]+dp[2][a]+dp[3][a]+dp[4][a]);
    }
    return 0;
}

 

// luogu-judger-enable-o2
#include<iostream>
#include<cstdio>
#define LL long long 
using namespace std;
const int MAXN=1e6+10;
int mul[MAXN],dp[MAXN];
int ans[MAXN];
int main()
{
    #ifdef WIN32
    freopen("a.in","r",stdin);
    #else
    #endif
    int N=200;
    for(int i=1;i<=N;i++) mul[i]=i*i;
    for(int i=1;i<=N;i++) ans[ mul[i] ] ++;
    for(int i=1;i<=N;i++)
        for(int j=i;j<=N;j++)
            ans[ mul[i]+mul[j] ] ++;
    for(int i=1;i<=N;i++)
        for(int j=i;j<=N;j++)
            for(int k=j;k<=N;k++)
                ans[ mul[i]+mul[j]+mul[k] ] ++;
    for(int i=1;i<=N;i++)
        for(int j=i;j<=N;j++)
            for(int k=j;k<=N;k++)
                for(int l=k;l<=N;l++)
                    ans[ mul[i]+mul[j]+mul[k]+mul[l] ]++;
    int T;
    scanf("%d",&T);
    while(T--)
    {
        int a;
        scanf("%d",&a);
        printf("%d\n",ans[a]);
    }
    
    return 0;
}