欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

Task1.0 学习笔记线性回归;Softmax与分类模型、多层感知机

程序员文章站 2022-06-26 17:13:26
...

线性回归模型使用pytorch的简洁实现
import torch
from torch import nn
import numpy as np
torch.manual_seed(1)

生成数据集

num_inputs = 2
num_examples = 1000

true_w = [2, -3.4]
true_b = 4.2

features = torch.tensor(np.random.normal(0, 1, (num_examples, num_inputs)), dtype=torch.float)
labels = true_w[0] * features[:, 0] + true_w[1] * features[:, 1] + true_b
labels += torch.tensor(np.random.normal(0, 0.01, size=labels.size()), dtype=torch.float)

读取数据

import torch.utils.data as Data

batch_size = 10

dataset = Data.TensorDataset(features, labels)

data_iter = Data.DataLoader(
dataset=dataset, # torch TensorDataset format
batch_size=batch_size, # mini batch size
shuffle=True, # whether shuffle the data or not
num_workers=2, # read data in multithreading
)

for X, y in data_iter:
print(X, ‘\n’, y)
break

定义模型

class LinearNet(nn.Module):
def init(self, n_feature):
super(LinearNet, self).init() # call father function to init
self.linear = nn.Linear(n_feature, 1) # function prototype: torch.nn.Linear(in_features, out_features, bias=True)

def forward(self, x):
    y = self.linear(x)
    return y

net = LinearNet(num_inputs) # 模型实例化

参数初始化
from torch.nn import init

init.normal_(net[0].weight, mean=0.0, std=0.01)
init.constant_(net[0].bias, val=0.0)

loss = nn.MSELoss() #交叉熵损失函数
优化模型
import torch.optim as optim

optimizer = optim.SGD(net.parameters(), lr=0.03) # built-in random gradient descent function
print(optimizer)

模型训练
num_epochs = 3
for epoch in range(1, num_epochs + 1):
for X, y in data_iter:
output = net(X)
l = loss(output, y.view(-1, 1))
optimizer.zero_grad() # reset gradient, equal to net.zero_grad()
l.backward()
optimizer.step()
print(‘epoch %d, loss: %f’ % (epoch, l.item()))

Softmax与分类模型
导入模块
import torch
import torchvision
import numpy as np
import sys
sys.path.append("/home/kesci/input")
import d2lzh1981 as d2l

获取数据
batch_size = 256
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size, root=’/home/kesci/input/FashionMNIST2065’

超参数初始化
num_inputs = 784
print(28*28)
num_outputs = 10

W = torch.tensor(np.random.normal(0, 0.01, (num_inputs, num_outputs)), dtype=torch.float)
b = torch.zeros(num_outputs, dtype=torch.float)

W.requires_grad_(requires_grad=True)
b.requires_grad_(requires_grad=True)
自定义 SOFTMAX函数
def softmax(X):
X_exp = X.exp()
partition = X_exp.sum(dim=1, keepdim=True)
# print("X size is ", X_exp.size())
# print("partition size is ", partition, partition.size())
return X_exp / partition # 这里应用了广播机制
自定义模型
def net(X):
return softmax(torch.mm(X.view((-1, num_inputs)), W) + b)

损失函数
y_hat = torch.tensor([[0.1, 0.3, 0.6], [0.3, 0.2, 0.5]])
y = torch.LongTensor([0, 2])
y_hat.gather(1, y.view(-1, 1))

自定义准确率函数:

def accuracy(y_hat, y):
return (y_hat.argmax(dim=1) == y).float().mean().item()

def evaluate_accuracy(data_iter, net):
acc_sum, n = 0.0, 0
for X, y in data_iter:
acc_sum += (net(X).argmax(dim=1) == y).float().sum().item()
n += y.shape[0]
return acc_sum / n

num_epochs, lr = 5, 0.1

模型训练
def train_ch3(net, train_iter, test_iter, loss, num_epochs, batch_size,
params=None, lr=None, optimizer=None):
for epoch in range(num_epochs):
train_l_sum, train_acc_sum, n = 0.0, 0.0, 0
for X, y in train_iter:
y_hat = net(X)
l = loss(y_hat, y).sum()

        # 梯度清零
        if optimizer is not None:
            optimizer.zero_grad()
        elif params is not None and params[0].grad is not None:
            for param in params:
                param.grad.data.zero_()
        
        l.backward()
        if optimizer is None:
            d2l.sgd(params, lr, batch_size)
        else:
            optimizer.step() 
        
        
        train_l_sum += l.item()
        train_acc_sum += (y_hat.argmax(dim=1) == y).sum().item()

多层感知机pytorch实现

导入模块
import torch
from torch import nn
from torch.nn import init
import numpy as np
import sys
sys.path.append("/home/kesci/input")
import d2lzh1981 as d2l

获取数据
atch_size = 256
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size,root=’/home/kesci/input/FashionMNIST2065’)
定义模型

num_inputs, num_outputs, num_hiddens = 784, 10, 256

W1 = torch.tensor(np.random.normal(0, 0.01, (num_inputs, num_hiddens)), dtype=torch.float)
b1 = torch.zeros(num_hiddens, dtype=torch.float)
W2 = torch.tensor(np.random.normal(0, 0.01, (num_hiddens, num_outputs)), dtype=torch.float)
b2 = torch.zeros(num_outputs, dtype=torch.float)

params = [W1, b1, W2, b2]
for param in params:
param.requires_grad_(requires_grad=True)

**函数
def relu(X):
return torch.max(input=X, other=torch.tensor(0.0))
定义网路 损失函数
def net(X):
X = X.view((-1, num_inputs))
H = relu(torch.matmul(X, W1) + b1)
return torch.matmul(H, W2) + b2

loss = torch.nn.CrossEntropyLoss()
模型训练
num_epochs = 5
d2l.train_ch3(net, train_iter, test_iter, loss, num_epochs, batch_size, None, None, optimizer)

相关标签: 打卡