OpenCV中feature2D学习——SURF和SIFT算子实现特征点检测
程序员文章站
2022-06-11 15:48:34
...
在OpenCV的features2d中实现了SIFT和SURF算法,可以用于图像特征点的自动检测。具体实现是采用SurfFeatureDetector/SiftFeatureDetector类的detect函数检测SURF/SIFT特征的关键点,并保存在vector容器中,最后使用drawKeypoints函数绘制出特征点。
实验所用环境是opencv2.4.0+vs2008+win7,测试图片是:
SURF特征点检测
实验代码如下。这里需要注意SurfFeatureDetector是包含在opencv2/nonfree/features2d.hpp中,所以应该include这个头文件,并且在“项目属性->链接器->输入->附加依赖项”中加入库文件:opencv_nonfree240d.lib。
/**
* @SURF特征点检测并绘制特征点
* @author holybin
*/
#include <stdio.h>
#include <iostream>
#include "opencv2/core/core.hpp"
#include "opencv2/highgui/highgui.hpp"
//#include "opencv2/features2d/features2d.hpp"
#include "opencv2/nonfree/features2d.hpp" //SurfFeatureDetector实际在该头文件中
using namespace cv;
using namespace std;
int main( int argc, char** argv )
{
Mat src = imread( "D:\\opencv_pic\\cat3d120.jpg", 0 );
//Mat src = imread( "D:\\opencv_pic\\cat0.jpg", 0 );
if( !src.data )
{
cout<< " --(!) Error reading images "<<endl;
return -1;
}
//1--初始化SURF检测算子
int minHessian = 400;
SurfFeatureDetector detector( minHessian );
//2--使用SURF算子检测特征点
vector<KeyPoint> keypoints;
detector.detect( src, keypoints );
//3--绘制特征点
Mat keypointImg;
drawKeypoints( src, keypoints, keypointImg, Scalar::all(-1), DrawMatchesFlags::DEFAULT );
imshow("SURF keypoints", keypointImg );
cout<<"keypoint number: "<<keypoints.size()<<endl;
waitKey(0);
return 0;
}
SIFT特征点检测
同样的,使用SIFT特征描述子进行特征点检测的过程类似,只不过换成了SiftFeatureDetector类,实验代码如下:
/**
* @SIFT特征点检测并绘制特征点
* @author holybin
*/
#include <stdio.h>
#include <iostream>
#include "opencv2/core/core.hpp"
#include "opencv2/highgui/highgui.hpp"
//#include "opencv2/features2d/features2d.hpp"
#include "opencv2/nonfree/features2d.hpp" //SiftFeatureDetector实际在该头文件中
using namespace cv;
using namespace std;
int main( int argc, char** argv )
{
Mat src = imread( "D:\\opencv_pic\\cat3d120.jpg", 0 );
//Mat src = imread( "D:\\opencv_pic\\cat0.jpg", 0 );
if( !src.data )
{
cout<< " --(!) Error reading images "<<endl;
return -1;
}
//1--初始化SIFT检测算子
//int minHessian = 400;
SiftFeatureDetector detector;//( minHessian );
//2--使用SIFT算子检测特征点
vector<KeyPoint> keypoints;
detector.detect( src, keypoints );
//3--绘制特征点
Mat keypointImg;
drawKeypoints( src, keypoints, keypointImg, Scalar::all(-1), DrawMatchesFlags::DEFAULT );
imshow("SIFT keypoints", keypointImg );
cout<<"keypoint number: "<<keypoints.size()<<endl;
waitKey(0);
return 0;
}
从检测结果可以看出,SURF算子检测到的特征点远远多于SIFT算子,至于检测的精确度如何,后面试试利用SIFT和SURF算子进行特征点匹配来区分。