OpenCV中feature2D学习——SIFT和SURF算法实现目标检测
程序员文章站
2022-06-11 15:39:46
...
当前使用版本opencv3.4.0,需要安装opencv_contrib
surf特征点检测
- surf算法为每个检测到的特征定义了位置和尺度,尺度值可以用于定义围绕特征点的窗口大小,不论物体的尺度在窗口是怎么样的,都将包含相同的视觉信息,这些信息用于表示特征点以使得它们与众不同。
SURF 算法,全称是 Speeded-Up Robust Features
#include "opencv2/highgui.hpp"
#include "opencv2/xfeatures2d/nonfree.hpp"
#include <iostream>
#include <opencv2/calib3d/calib3d_c.h>
using namespace cv;
using namespace std;
using namespace cv::xfeatures2d;
int main()
{
Mat srcImage1 = imread( "/home/oceanstar/桌面/1.png", CV_LOAD_IMAGE_GRAYSCALE );
Mat srcImage2 = imread( "/home/oceanstar/桌面/2.png", CV_LOAD_IMAGE_GRAYSCALE );
if( !srcImage1.data || !srcImage2.data )//检测是否读取成功
{ printf("读取图片错误,请确定目录下是否有imread函数指定名称的图片存在~! \n"); return false; }
int minHessian = 400; //定义SURF中的hessian阈值特征点检测算子
// SURF与SurfFeatureDetector等价
//定义一个SurfFeatureDetector(SURF) 特征检测类对象
Ptr<cv::xfeatures2d::SurfFeatureDetector>detector = cv::xfeatures2d::SurfFeatureDetector::create(minHessian);
std::vector<KeyPoint> keypoints_1, keypoints_2;//vector模板类是能够存放任意类型的动态数组,能够增加和压缩数据
//【3】调用detect函数检测出SURF特征关键点,保存在vector容器中
detector->detect( srcImage1, keypoints_1 );
detector->detect( srcImage2, keypoints_2 );
//【4】绘制特征关键点.
Mat img_keypoints_1; Mat img_keypoints_2;
drawKeypoints( srcImage1, keypoints_1, img_keypoints_1, Scalar::all(-1), DrawMatchesFlags::DEFAULT );
// drawKeypoints( srcImage1, keypoints_1, img_keypoints_1, Scalar::all(-1), DrawMatchesFlags::DRAW_RICH_KEYPOINTS );
drawKeypoints( srcImage2, keypoints_2, img_keypoints_2, Scalar::all(-1), DrawMatchesFlags::DEFAULT );
//【5】显示效果图
imshow("特征点检测效果图1", img_keypoints_1 );
imshow("特征点检测效果图2", img_keypoints_2 );
waitKey(0);
return 0;
}
绘制关键点:drawKeypoints
CV_EXPORTS_W void drawKeypoints( InputArray image, const std::vector<KeyPoint>& keypoints, InputOutputArray outImage,
const Scalar& color=Scalar::all(-1), int flags=DrawMatchesFlags::DEFAULT );
SURF特征描述
#include "opencv2/highgui.hpp"
#include "opencv2/xfeatures2d/nonfree.hpp"
#include <iostream>
#include <opencv2/calib3d/calib3d_c.h>
using namespace cv;
using namespace std;
using namespace cv::xfeatures2d;
int main()
{
Mat srcImage1 = imread( "/home/oceanstar/桌面/1.png", CV_LOAD_IMAGE_GRAYSCALE );
Mat srcImage2 = imread( "/home/oceanstar/桌面/2.png", CV_LOAD_IMAGE_GRAYSCALE );
if( !srcImage1.data || !srcImage2.data )//检测是否读取成功
{ printf("读取图片错误,请确定目录下是否有imread函数指定名称的图片存在~! \n"); return false; }
int minHessian = 3000; //定义SURF中的hessian阈值特征点检测算子
//定义一个SurfFeatureDetector(SURF) 特征检测类对象
Ptr<cv::xfeatures2d::SurfFeatureDetector>detector = cv::xfeatures2d::SurfFeatureDetector::create(minHessian);
std::vector<KeyPoint> keypoints_1, keypoints_2;//vector模板类是能够存放任意类型的动态数组,能够增加和压缩数据
//【3】调用detect函数检测出SURF特征关键点,保存在vector容器中
detector->detect( srcImage1, keypoints_1 );
detector->detect( srcImage2, keypoints_2 );
///【4】 使用SIFT算子提取特征(计算特征向量)
Ptr<xfeatures2d::SurfDescriptorExtractor> extractor = xfeatures2d::SurfDescriptorExtractor::create();
Mat descriptors1, descriptors2;
extractor->compute( srcImage1, keypoints_1, descriptors1 );
extractor->compute( srcImage2, keypoints_2, descriptors2 );
//【5】使用BruteForce进行匹配
// 实例化一个匹配器
Ptr<DescriptorMatcher> matcher = DescriptorMatcher::create("BruteForce");
std::vector< DMatch > matches;
//匹配两幅图中的描述子(descriptors)
matcher->match( descriptors1, descriptors2, matches );
//【6】绘制从两个图像中匹配出的关键点
Mat imgMatches;
drawMatches( srcImage1, keypoints_1, srcImage2, keypoints_2, matches, imgMatches );//进行绘制
//【7】显示效果图
imshow("匹配图", imgMatches );
waitKey(0);
return 0;
}
使用FLANN进行特征点匹配
#include "opencv2/highgui.hpp"
#include "opencv2/xfeatures2d/nonfree.hpp"
#include <iostream>
#include <opencv2/calib3d/calib3d_c.h>
using namespace cv;
using namespace std;
using namespace cv::xfeatures2d;
int main()
{
//【1】载入源图片
Mat srcImage_1 = imread( "/home/oceanstar/桌面/1.png", CV_LOAD_IMAGE_GRAYSCALE );
Mat srcImage_2 = imread( "/home/oceanstar/桌面/2.png", CV_LOAD_IMAGE_GRAYSCALE );
if( !srcImage_1.data || !srcImage_2.data )//检测是否读取成功
{ printf("读取图片错误,请确定目录下是否有imread函数指定名称的图片存在~! \n"); return false; }
//【2】利用SURF检测器检测的关键点
int minHessian = 3000;
Ptr<SURF>detector = SURF::create(minHessian);
std::vector<KeyPoint> keypoints_1, keypoints_2;
detector->detect( srcImage_1, keypoints_1 );
detector->detect( srcImage_2, keypoints_2 );
///【4】 使用SIFT算子提取特征(计算特征向量)
Ptr<SURF> extractor = SurfDescriptorExtractor::create();
Mat descriptors_1, descriptors_2;
extractor->compute( srcImage_1, keypoints_1, descriptors_1 );
extractor->compute( srcImage_2, keypoints_2, descriptors_2 );
//【4】采用FLANN算法匹配描述符向量
Ptr<DescriptorMatcher> matcher = DescriptorMatcher::create("FlannBased");
std::vector< DMatch > matches;
matcher->match( descriptors_1, descriptors_2, matches );
//【5】快速计算关键点之间的最大和最小距离
double max_dist = 0; double min_dist = 100;
for( int i = 0; i < descriptors_1.rows; i++ )
{
double dist = matches[i].distance;
if( dist < min_dist ) min_dist = dist;
if( dist > max_dist ) max_dist = dist;
}
printf("> 最大距离(Max dist) : %f \n", max_dist );
printf("> 最小距离(Min dist) : %f \n", min_dist );
//【6】存下符合条件的匹配结果(即其距离小于2* min_dist的),使用radiusMatch同样可行
std::vector< DMatch > good_matches;
for( int i = 0; i < descriptors_1.rows; i++ )
{
if( matches[i].distance < 2*min_dist )
{ good_matches.push_back( matches[i]); }
}
//【7】绘制出符合条件的匹配点
Mat img_matches;
drawMatches( srcImage_1, keypoints_1, srcImage_2, keypoints_2,
good_matches, img_matches, Scalar::all(-1), Scalar::all(-1),
vector<char>(), DrawMatchesFlags::NOT_DRAW_SINGLE_POINTS );
//【8】输出相关匹配点信息
for( int i = 0; i < good_matches.size(); i++ )
{ printf( ">符合条件的匹配点 [%d] 特征点1: %d -- 特征点2: %d \n", i, good_matches[i].queryIdx, good_matches[i].trainIdx ); }
//【9】显示效果图
imshow( "匹配效果图", img_matches );
//按任意键退出程序
waitKey(0);
return 0;
}
寻找已知物体
#include "opencv2/highgui.hpp"
#include "opencv2/xfeatures2d/nonfree.hpp"
#include <iostream>
#include <opencv2/calib3d/calib3d_c.h>
#include <cv.hpp>
using namespace cv;
using namespace std;
using namespace cv::xfeatures2d;
int main()
{
//【1】载入源图片
Mat srcImage_1 = imread( "/home/oceanstar/桌面/1.png", CV_LOAD_IMAGE_GRAYSCALE );
Mat srcImage_2 = imread( "/home/oceanstar/桌面/2.png", CV_LOAD_IMAGE_GRAYSCALE );
if( !srcImage_1.data || !srcImage_2.data )//检测是否读取成功
{ printf("读取图片错误,请确定目录下是否有imread函数指定名称的图片存在~! \n"); return false; }
//【2】利用SURF检测器检测的关键点
int minHessian = 300;
Ptr<SURF>detector = SURF::create(minHessian);
std::vector<KeyPoint> keypoints_1, keypoints_2;
detector->detect( srcImage_1, keypoints_1 );
detector->detect( srcImage_2, keypoints_2 );
///【4】 使用SIFT算子提取特征(计算特征向量)
Ptr<SURF> extractor = SurfDescriptorExtractor::create();
Mat descriptors_1, descriptors_2;
extractor->compute( srcImage_1, keypoints_1, descriptors_1 );
extractor->compute( srcImage_2, keypoints_2, descriptors_2 );
//【5】使用FLANN匹配算子进行匹配
Ptr<DescriptorMatcher> matcher = DescriptorMatcher::create("FlannBased");
std::vector< DMatch > matches;
matcher->match( descriptors_1, descriptors_2, matches );
//【5】快速计算关键点之间的最大和最小距离
double max_dist = 0; double min_dist = 100;
for( int i = 0; i < descriptors_1.rows; i++ )
{
double dist = matches[i].distance;
if( dist < min_dist ) min_dist = dist;
if( dist > max_dist ) max_dist = dist;
}
printf("> 最大距离(Max dist) : %f \n", max_dist );
printf("> 最小距离(Min dist) : %f \n", min_dist );
//【6】存下符合条件的匹配结果(即其距离小于3* min_dist的),使用radiusMatch同样可行
std::vector< DMatch > good_matches;
for( int i = 0; i < descriptors_1.rows; i++ )
{
if( matches[i].distance < 3*min_dist )
{ good_matches.push_back( matches[i]); }
}
//【7】绘制出符合条件的匹配点
Mat img_matches;
drawMatches( srcImage_1, keypoints_1, srcImage_2, keypoints_2,
good_matches, img_matches, Scalar::all(-1), Scalar::all(-1),
vector<char>(), DrawMatchesFlags::NOT_DRAW_SINGLE_POINTS );
//定义两个局部变量
vector<Point2f> obj;
vector<Point2f> scene;
//从匹配成功的匹配对中获取关键点
for( unsigned int i = 0; i < good_matches.size(); i++ )
{
obj.push_back( keypoints_1[ good_matches[i].queryIdx ].pt );
scene.push_back( keypoints_2[ good_matches[i].trainIdx ].pt );
}
Mat H = findHomography( obj, scene, CV_RANSAC );//计算透视变换
//从待测图片中获取角点
vector<Point2f> obj_corners(4);
obj_corners[0] = cvPoint(0,0); obj_corners[1] = cvPoint( srcImage_1.cols, 0 );
obj_corners[2] = cvPoint( srcImage_1.cols, srcImage_1.rows ); obj_corners[3] = cvPoint( 0, srcImage_1.rows );
vector<Point2f> scene_corners(4);
//进行透视变换
perspectiveTransform( obj_corners, scene_corners, H);
//绘制出角点之间的直线
line( img_matches, scene_corners[0] + Point2f( static_cast<float>(srcImage_1.cols), 0), scene_corners[1] + Point2f( static_cast<float>(srcImage_1.cols), 0), Scalar(255, 0, 123), 4 );
line( img_matches, scene_corners[1] + Point2f( static_cast<float>(srcImage_1.cols), 0), scene_corners[2] + Point2f( static_cast<float>(srcImage_1.cols), 0), Scalar( 255, 0, 123), 4 );
line( img_matches, scene_corners[2] + Point2f( static_cast<float>(srcImage_1.cols), 0), scene_corners[3] + Point2f( static_cast<float>(srcImage_1.cols), 0), Scalar( 255, 0, 123), 4 );
line( img_matches, scene_corners[3] + Point2f( static_cast<float>(srcImage_1.cols), 0), scene_corners[0] + Point2f( static_cast<float>(srcImage_1.cols), 0), Scalar( 255, 0, 123), 4 );
//显示最终结果
imshow( "效果图", img_matches );
//按任意键退出程序
waitKey(0);
return 0;
}
aaa
#include "opencv2/highgui.hpp"
#include "opencv2/xfeatures2d/nonfree.hpp"
#include "opencv2/line_descriptor.hpp"
#include <iostream>
#include <opencv2/calib3d/calib3d_c.h>
#include <cv.hpp>
using namespace cv;
using namespace std;
using namespace cv::xfeatures2d;
int main()
{
Mat imgObject = imread( "/home/oceanstar/桌面/1.png", CV_LOAD_IMAGE_GRAYSCALE );
Mat imgScene = imread( "/home/oceanstar/桌面/2.png", CV_LOAD_IMAGE_GRAYSCALE );
if( !imgObject.data || !imgScene.data )
{
cout<< " --(!) Error reading images "<<endl;
return -1;
}
double begin = clock();
int minHessian = 700;
//SiftFeatureDetector detector;
Ptr<cv::xfeatures2d::SIFT>detector = cv::xfeatures2d::SIFT::create(minHessian);
vector<KeyPoint> keypointsObject, keypointsScene;
detector->detect( imgObject, keypointsObject );
detector->detect( imgScene, keypointsScene );
cout<<"object--number of keypoints: "<<keypointsObject.size()<<endl;
cout<<"scene--number of keypoints: "<<keypointsScene.size()<<endl;
///-- Step 2: 使用SIFT算子提取特征(计算特征向量)
Ptr<xfeatures2d::SiftDescriptorExtractor> extractor = xfeatures2d::SiftDescriptorExtractor::create();
Mat descriptorsObject, descriptorsScene;
extractor->compute( imgObject, keypointsObject, descriptorsObject );
extractor->compute( imgScene, keypointsScene, descriptorsScene );
///-- Step 3: 使用FLANN法进行匹配
FlannBasedMatcher matcher;
vector< DMatch > allMatches;
matcher.match( descriptorsObject, descriptorsScene, allMatches );
cout<<"number of matches before filtering: "<<allMatches.size()<<endl;
//-- 计算关键点间的最大最小距离
double maxDist = 0;
double minDist = 100;
for( int i = 0; i < descriptorsObject.rows; i++ )
{
double dist = allMatches[i].distance;
if( dist < minDist )
minDist = dist;
if( dist > maxDist )
maxDist = dist;
}
printf(" max dist : %f \n", maxDist );
printf(" min dist : %f \n", minDist );
//-- 过滤匹配点,保留好的匹配点(这里采用的标准:distance<3*minDist)
vector< DMatch > goodMatches;
for( int i = 0; i < descriptorsObject.rows; i++ )
{
if( allMatches[i].distance < 2*minDist )
goodMatches.push_back( allMatches[i]);
}
cout<<"number of matches after filtering: "<<goodMatches.size()<<endl;
//-- 显示匹配结果
Mat resultImg;
drawMatches( imgObject, keypointsObject, imgScene, keypointsScene,
goodMatches, resultImg, Scalar::all(-1), Scalar::all(-1), vector<char>(),
DrawMatchesFlags::NOT_DRAW_SINGLE_POINTS //不显示未匹配的点
);
//-- 输出匹配点的对应关系
for( int i = 0; i < goodMatches.size(); i++ )
printf( " good match %d: keypointsObject [%d] -- keypointsScene [%d]\n", i,
goodMatches[i].queryIdx, goodMatches[i].trainIdx );
///-- Step 4: 使用findHomography找出相应的透视变换
vector<Point2f> object;
vector<Point2f> scene;
for( size_t i = 0; i < goodMatches.size(); i++ )
{
//-- 从好的匹配中获取关键点: 匹配关系是关键点间具有的一 一对应关系,可以从匹配关系获得关键点的索引
//-- e.g. 这里的goodMatches[i].queryIdx和goodMatches[i].trainIdx是匹配中一对关键点的索引
object.push_back( keypointsObject[ goodMatches[i].queryIdx ].pt );
scene.push_back( keypointsScene[ goodMatches[i].trainIdx ].pt );
}
Mat H = findHomography( object, scene, CV_RANSAC );
///-- Step 5: 使用perspectiveTransform映射点群,在场景中获取目标位置
std::vector<Point2f> objCorners(4);
objCorners[0] = cvPoint(0,0);
objCorners[1] = cvPoint( imgObject.cols, 0 );
objCorners[2] = cvPoint( imgObject.cols, imgObject.rows );
objCorners[3] = cvPoint( 0, imgObject.rows );
std::vector<Point2f> sceneCorners(4);
perspectiveTransform( objCorners, sceneCorners, H);
//-- 在被检测到的目标四个角之间划线
line( resultImg, sceneCorners[0] + Point2f( imgObject.cols, 0), sceneCorners[1] + Point2f( imgObject.cols, 0), Scalar(0, 255, 0), 4 );
line( resultImg, sceneCorners[1] + Point2f( imgObject.cols, 0), sceneCorners[2] + Point2f( imgObject.cols, 0), Scalar( 0, 255, 0), 4 );
line( resultImg, sceneCorners[2] + Point2f( imgObject.cols, 0), sceneCorners[3] + Point2f( imgObject.cols, 0), Scalar( 0, 255, 0), 4 );
line( resultImg, sceneCorners[3] + Point2f( imgObject.cols, 0), sceneCorners[0] + Point2f( imgObject.cols, 0), Scalar( 0, 255, 0), 4 );
//-- 显示检测结果
imshow("detection result", resultImg );
double end = clock();
cout<<"\nSIFT--elapsed time: "<<(end - begin)/CLOCKS_PER_SEC*1000<<" ms\n";
waitKey(0);
return 0;
}