欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

PAT A1099. Build A Binary Search Tree (30)

程序员文章站 2022-06-11 14:27:40
...
  1. Build A Binary Search Tree (30)

时间限制
100 ms
内存限制
65536 kB
代码长度限制
16000 B
判题程序
Standard
作者
CHEN, Yue
A Binary Search Tree (BST) is recursively defined as a binary tree which has the following properties:

The left subtree of a node contains only nodes with keys less than the node’s key.
The right subtree of a node contains only nodes with keys greater than or equal to the node’s key.
Both the left and right subtrees must also be binary search trees.
Given the structure of a binary tree and a sequence of distinct integer keys, there is only one way to fill these keys into the tree so that the resulting tree satisfies the definition of a BST. You are supposed to output the level order traversal sequence of that tree. The sample is illustrated by Figure 1 and 2.

Input Specification:

Each input file contains one test case. For each case, the first line gives a positive integer N (<=100) which is the total number of nodes in the tree. The next N lines each contains the left and the right children of a node in the format “left_index right_index”, provided that the nodes are numbered from 0 to N-1, and 0 is always the root. If one child is missing, then -1 will represent the NULL child pointer. Finally N distinct integer keys are given in the last line.

Output Specification:

For each test case, print in one line the level order traversal sequence of that tree. All the numbers must be separated by a space, with no extra space at the end of the line.

Sample Input:
9
1 6
2 3
-1 -1
-1 4
5 -1
-1 -1
7 -1
-1 8
-1 -1
73 45 11 58 82 25 67 38 42
Sample Output:
58 25 82 11 38 67 45 73 42

#include<cstdio>
#include<algorithm>
#include<queue>
using namespace std;
const int maxn=102;
int flag[maxn]={1};
int In[maxn];
int cnt=0;
struct Node{
    int data;
    int l,r;
}node[maxn];
int n;

void LevelOrder(int root){
    int ct=0;
    queue<Node>q;
    q.push(node[root]);
    while(q.size()){
        Node x=q.front();
        printf("%d",x.data);
        ct++;
        if(ct<n)printf(" ");
        q.pop();
        if(x.l!=-1){
            q.push(node[x.l]);
        }
        if(x.r!=-1){
            q.push(node[x.r]);
        }
    }
}
void create(int root){
    if(root==-1)return;
    create(node[root].l);
    node[root].data=In[cnt++];
    create(node[root].r);
}
int main(){

    scanf("%d",&n);
    for(int i=0;i<n;i++){
        scanf("%d %d",&node[i].l,&node[i].r);
        if(node[i].l!=-1)flag[node[i].l]=0;
        if(node[i].r!=-1)flag[node[i].r]=0;
    }
    int root=-1;
    for(int i=0;i<n;i++){
        if(flag[i]==1){
            root=i;
            break;
        }
    }
    for(int i=0;i<n;i++)
        scanf("%d",In+i);
    sort(In,In+n);
    create(root);
    LevelOrder(root);
    return 0;
}

PAT A1099. Build A Binary Search Tree (30)