欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

PAT 1053 Path of Equal Weight [DFS] [树的遍历]

程序员文章站 2022-06-11 10:36:16
...

Given a non-empty tree with root R, and with weight W​i​​ assigned to each tree node T​i​​. The weight of a path from R to L is defined to be the sum of the weights of all the nodes along the path from R to any leaf node L.

Now given any weighted tree, you are supposed to find all the paths with their weights equal to a given number. For example, let's consider the tree showed in the following figure: for each node, the upper number is the node ID which is a two-digit number, and the lower number is the weight of that node. Suppose that the given number is 24, then there exists 4 different paths which have the same given weight: {10 5 2 7}, {10 4 10}, {10 3 3 6 2} and {10 3 3 6 2}, which correspond to the red edges in the figure.

PAT 1053 Path of Equal Weight [DFS] [树的遍历]

Input Specification:

Each input file contains one test case. Each case starts with a line containing 0<N≤100, the number of nodes in a tree, M (<N), the number of non-leaf nodes, and 0<S<2​30​​, the given weight number. The next line contains N positive numbers where W​i​​ (<1000) corresponds to the tree node T​i​​. Then M lines follow, each in the format:

ID K ID[1] ID[2] ... ID[K]

where ID is a two-digit number representing a given non-leaf node, K is the number of its children, followed by a sequence of two-digit ID's of its children. For the sake of simplicity, let us fix the root ID to be 00.

Output Specification:

For each test case, print all the paths with weight S in non-increasing order. Each path occupies a line with printed weights from the root to the leaf in order. All the numbers must be separated by a space with no extra space at the end of the line.

Note: sequence {A​1​​,A​2​​,⋯,A​n​​} is said to be greater than sequence {B​1​​,B​2​​,⋯,B​m​​} if there exists 1≤k<min{n,m} such that A​i​​=B​i​​ for i=1,⋯,k, and A​k+1​​>B​k+1​​.

Sample Input:

20 9 24
10 2 4 3 5 10 2 18 9 7 2 2 1 3 12 1 8 6 2 2
00 4 01 02 03 04
02 1 05
04 2 06 07
03 3 11 12 13
06 1 09
07 2 08 10
16 1 15
13 3 14 16 17
17 2 18 19

Sample Output:

10 5 2 7
10 4 10
10 3 3 6 2
10 3 3 6 2

----------------------------------这是题目和解题的分割线----------------------------------

输出权重和为给定值的路径,用DFS。静态存储这棵树,便于操作。

#include<cstdio>
#include<vector>
#include<algorithm>

using namespace std;

struct node
{
	int weight;
	//子结点是不确定的,为了避免可能存在的内存超限,用可变数组vector 
	vector<int> child;  
}node[110];

int m,n,s;
vector<int> tmp;

void dfs(int index,int sum)
{
	if(sum>s) return; //大于,中止
	//找到,并且保证这是叶子结点,不然第0个测试点会答案错误 
	if(sum==s&&node[index].child.size()==0)
	{
		for(int i=0;i<tmp.size();i++)
		{
			printf("%d",node[tmp[i]].weight); //输出weight 
			if(i!=tmp.size()-1) printf(" ");
		}
		printf("\n");
	}
	for(int i=0;i<node[index].child.size();i++)
	{ 
		int ch = node[index].child[i];
		tmp.push_back(ch); //记录下这个结点 
		dfs(ch,sum+node[ch].weight); //递归 
		tmp.pop_back(); //回溯后pop,以免影响下一次递归 
	}
}

//weight从大到小排序 
bool cmp(int a,int b)
{
	return node[a].weight>node[b].weight;
}

int main()
{
	int i,j,id,x,child;
	scanf("%d%d%d",&n,&m,&s);
	for(i=0;i<n;i++)
		scanf("%d",&node[i].weight);
	for(i=0;i<m;i++)
	{
		scanf("%d%d",&id,&x);
		for(j=0;j<x;j++)
		{
			scanf("%d",&child); //读入结点关系 
			node[id].child.push_back(child);
		}
		//子结点排序成从大到小的顺序,便于最后输出 
		//begin end的用法  
		sort(node[id].child.begin(),node[id].child.end(),cmp);
	}
	//先push头结点,不然等会儿不太好操作 
	tmp.push_back(0);
	dfs(0,node[0].weight); //push头结点要把头结点的weight也传进去 
	return 0;
}