欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

PAT A1053:Path of Equal Weight

程序员文章站 2022-07-07 20:19:20
...

题目描述

1053 Path of Equal Weight (30分)
Given a non-empty tree with root R, and with weight WiW_i assigned to each tree node TiT_i. The weight of a path from R to L is defined to be the sum of the weights of all the nodes along the path from R to any leaf node L.

Now given any weighted tree, you are supposed to find all the paths with their weights equal to a given number. For example, let’s consider the tree showed in the following figure: for each node, the upper number is the node ID which is a two-digit number, and the lower number is the weight of that node. Suppose that the given number is 24, then there exists 4 different paths which have the same given weight: {10 5 2 7}, {10 4 10}, {10 3 3 6 2} and {10 3 3 6 2}, which correspond to the red edges in the figure.
PAT A1053:Path of Equal Weight

Input Specification:
Each input file contains one test case. Each case starts with a line containing 0<N≤100, the number of nodes in a tree,
M (<N), the number of non-leaf nodes, and 0<S<2300<S<2^30, the given weight number.
The next line contains N positive numbers where Wi (<1000) corresponds to the tree node Ti. Then M lines follow, each in the format:

ID K ID[1] ID[2] … ID[K]

where ID is a two-digit number representing a given non-leaf node, K is the number of its children, followed by a sequence of two-digit ID’s of its children. For the sake of simplicity, let us fix the root ID to be 00.

Output Specification:
For each test case, print all the paths with weight S in non-increasing order. Each path occupies a line with printed weights from the root to the leaf in order. All the numbers must be separated by a space with no extra space at the end of the line.

Note: sequence A1,A2,,An{A_1 ,A_2 ,……,A_n } is said to be greater than sequence B1,B2,,Bm{B_1 ,B_2 ,……,B_m } if there exists 1k<min(n,m)1≤k<min\left(n,m\right) such that Ai=BiA_i =B_i for i=1,…,k, and Ak+1>Bk+1A_{k+1} >B_{k+1} .

Sample Input:

20 9 24
10 2 4 3 5 10 2 18 9 7 2 2 1 3 12 1 8 6 2 2
00 4 01 02 03 04
02 1 05
04 2 06 07
03 3 11 12 13
06 1 09
07 2 08 10
16 1 15
13 3 14 16 17
17 2 18 19

Sample Output:

10 5 2 7
10 4 10
10 3 3 6 2
10 3 3 6 2

求解思路

给定一棵树和每个结点的权值,求所有从根节点到叶子结点的路径,使得每条路径上的结点的权值之和等于给定的常数S。如果有多条这样的路径,则按路径非递增的顺序输出。

  • 采用树结构,定义一个结构体node,用于存放结点的数据,以及指向其子节点的指针,因为子节点可能不止一个,所用用一个vector来存储每个结点的编号。因为最后的输出需要按照权值从大到小排序,所以在读入的时候可以实现对每个结点的子节点进行排序。这样就可以优先遍历每个子节点中权值更大的那个子节点
  • 用一个vector容器path来保存递归过程中产生的路径上的结点编号。接下来进行DFS搜索,参数:当前访问的结点标号index、当前路径上的权值和sum。递归过程的伪代码如下:
    • 若sum>S,直接return
    • 若sum==S,说明到达当前访问结点index为止,输入中需要达到的S已经得到了。如果当前结点位叶子结点,则输出path中的所有数据,否则return
    • 若sum<S,说明要求还没满足。此时枚举当前访问结点index的所有子节点,对每一个子节点child,先将其存入path中,然后在此基础上往下一层递归,下一层递归的参数为child,sum+node[child].weight
    • 注意:使用vector存储路径的话,记得下一层回溯上来之后将前面加入的子节点pop_back出来

代码实现

#include<cstdio>
#include<vector>
#include<algorithm>
using namespace std;
const int maxn=10001;
struct Node{
	int weight;
	vector<int>child;
}node[maxn];
int n,m,s;
vector<int>path;
bool cmp(int a,int b)	//根据结点值对结点进行排序 
{
	return node[a].weight>node[b].weight;
}
void DFS(int index,int sum)
{
	if(sum>s)	return;
	else if(sum==s)
	{
		if(node[index].child.size())	return;	//非叶子结点
		else
		{
			for(int i=0;i<path.size();i++)
			{
				printf("%d",node[path[i]].weight);
				if(i<path.size()-1)	printf(" ");
				else printf("\n");
			}	
		}	
	}
	else
	{
		for(int i=0;i<node[index].child.size();i++)	
		{
			int child=node[index].child[i];
			path.push_back(child);
			DFS(child,sum+node[child].weight);
			path.pop_back();	//下一层递归回溯上来之后将前面加入的子节点pop_back即可 
		}
	}
}
void init()
{
	// 用于数据读取与初始化 
	scanf("%d %d %d",&n,&m,&s);
	for(int i=0;i<n;i++)
	{
		scanf("%d",&node[i].weight);
	}
	for(int i=0;i<m;i++)
	{
		int node_index,child_num;
		scanf("%d %d",&node_index,&child_num);
		for(int j=0;j<child_num;j++)
		{
			int child_index;
			scanf("%d",&child_index);
			node[node_index].child.push_back(child_index);
		}
		sort(node[node_index].child.begin(),node[node_index].child.end(),cmp);
	}	
}
void solve()
{
	init();
	path.push_back(0);	//路径第一个结点设置为0号结点 
	DFS(0,node[0].weight);
}
int main()
{
	solve();
	return 0;
}