欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

1028 大数乘法 V2

程序员文章站 2022-05-22 19:20:15
...

1028 大数乘法 V2FFT简单应用

#include<iostream>
#include<complex>
#include<cstdio>
#include<cstdlib> 
#include<cstring>
#include<algorithm>
using namespace std;
typedef complex<double> cd;
const int MAXN = 2094153;
const double PI = acos(-1);
cd a[MAXN], b[MAXN];
int rev[MAXN];
void getrev(int bit){
	for(int i = 0; i < (1 << bit); ++i){
		rev[i] = (rev[i>>1]>>1)|((i&1)<<(bit - 1)); 
	}
}
void fft(cd* a, int n, int dft){
	for(int i = 0; i < n; ++i)	if(i < rev[i])	swap(a[i], a[rev[i]]);
	for(int step = 1; step < n; step<<=1){
		cd wn = exp(cd(0, PI * dft / step));
		for(int j = 0; j < n; j += step<<1){
			cd wnk(1, 0);
			for(int k = j; k < j + step; ++k){
				cd x = a[k];
				cd y = wnk * a[k + step];
				a[k] = x + y;
				a[k + step] = x -y;
				wnk *= wn;
			}
		}
	}
	if(dft == -1)	for(int i = 0; i < n; ++i)	a[i] /= n;
}
char s1[MAXN], s2[MAXN];
int output[MAXN];
int main(){
	scanf("%s%s", s1, s2);
	int l1 = strlen(s1), l2 = strlen(s2);
	int bit = 1, s = 2;
	for(bit = 1; (1<<bit) < l1 + l2 - 1; ++bit)	s <<= 1;
	for(int i = 0; i < l1; ++i)	a[i] = (double)(s1[l1 - i - 1] - '0');
	for(int i = 0; i < l2; ++i)	b[i] = (double)(s2[l2 - i - 1] - '0');
	getrev(bit); fft(a, s, 1); fft(b, s, 1);
	for(int i = 0; i < s; ++i)	a[i] *= b[i];
	fft(a, s, -1);
	for(int i = 0; i < s; ++i){
		output[i] += (int)(a[i].real() + 0.5);
		output[i + 1] += output[i] / 10;
		output[i] %= 10;
	}
	int i;
	for(i = s; !output[i] && i >= 0; --i);
	if(i == -1)	printf("0");
	for(; i >= 0; --i)	printf("%d", output[i]);
	printf("\n");
	return 0; 
}

相关标签: FFT